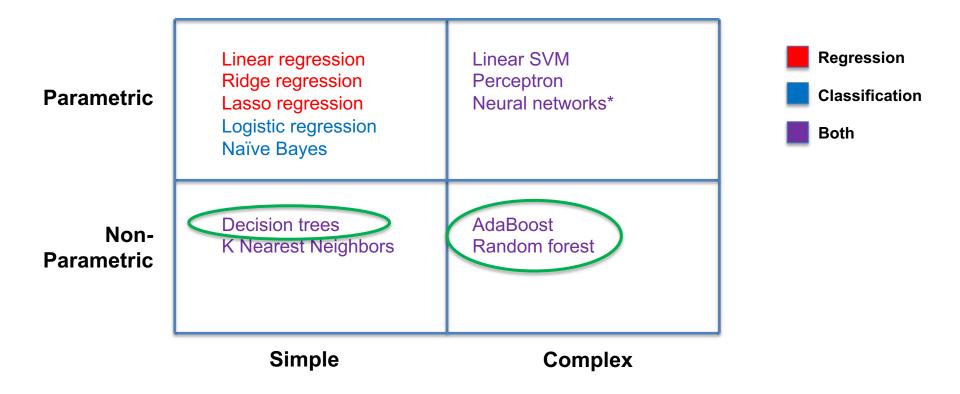
outrageously **AMBITIOUS** 

#### Module 5: Trees, Ensemble Models and Clustering



PRATT SCHOOL of ENGINEERING

## **Supervised Learning Algorithms**



# **Module 5 Objectives:**

At the conclusion of this module, you should be able to:

- 1) Describe how tree-based models differ from linear models
- 2) Identify the advantages of ensemble models and how they are assembled
- 3) Explain what clustering is and how K-Means clustering works



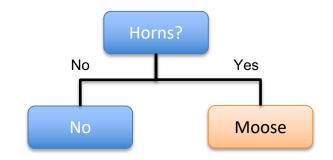
#### **Tree Models**



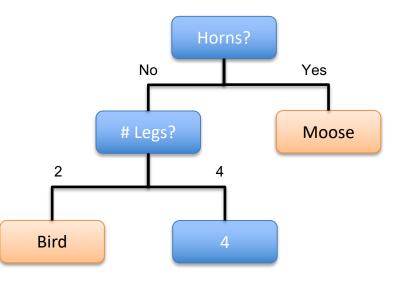
PRATT SCHOOL of ENGINEERING

|          | Horns | Color | # Legs | Label  |
|----------|-------|-------|--------|--------|
| Animal 1 | No    | Brown | 4      | Dog    |
| Animal 2 | No    | Green | 4      | Lizard |
| Animal 3 | No    | Black | 2      | Bird   |
| Animal 4 | Yes   | Brown | 4      | Moose  |

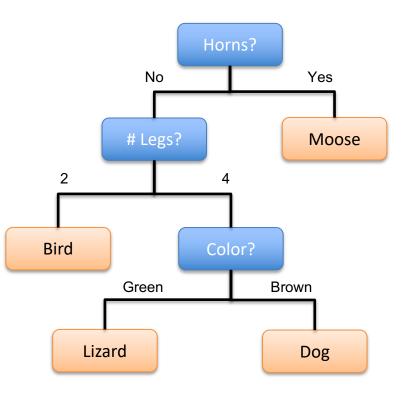
|          | Horns | Color | # Legs | Label  |
|----------|-------|-------|--------|--------|
| Animal 1 | No    | Brown | 4      | Dog    |
| Animal 2 | No    | Green | 4      | Lizard |
| Animal 3 | No    | Black | 2      | Bird   |
| Animal 4 | Yes   | Brown | 4      | Moose  |



|          | Horns | Color | # Legs | Label  |
|----------|-------|-------|--------|--------|
| Animal 1 | No    | Brown | 4      | Dog    |
| Animal 2 | No    | Green | 4      | Lizard |
| Animal 3 | No    | Black | 2      | Bird   |
| Animal 4 | Yes   | Brown | 4      | Moose  |



|          | Horns | Color | # Legs | Label  |
|----------|-------|-------|--------|--------|
| Animal 1 | No    | Brown | 4      | Dog    |
| Animal 2 | No    | Green | 4      | Lizard |
| Animal 3 | No    | Black | 2      | Bird   |
| Animal 4 | Yes   | Brown | 4      | Moose  |



# How to choose the splits

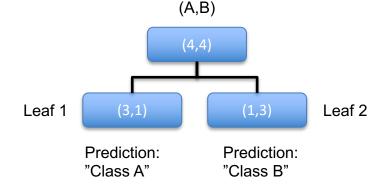
- Goal is to build the most efficient tree the one that splits the data using the minimum number of splits
- We define an objective function to optimize via the decision tree
- Our objective function is to maximize the **Information Gain (IG)** at each split:

IG = Decrease in impurity

= Impurity(Parent) - Impurity(Children)

## **Getting predictions from the tree**

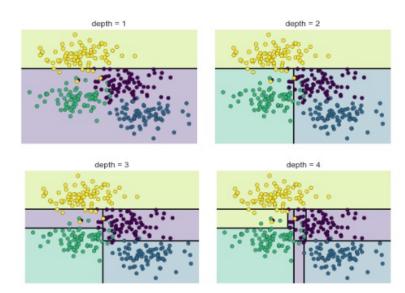
- We continue splitting the tree until we cannot split any further or we stop
- The bottom nodes are called "leaves"
- We take the majority average class and label all examples at the leaf with that class



# **Tree depth**

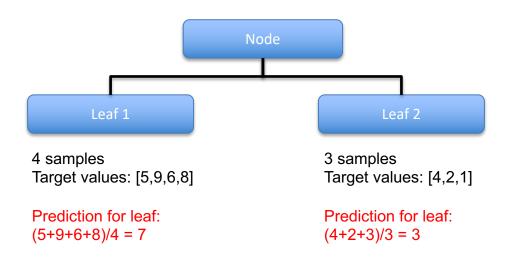
- Depth of our tree (max # of splits of a branch) is a hyperparameter
- Very shallow trees will underfit the data
- Deep trees will overfit the data (every example ends up as own leaf)





# **Regression trees**

Rather than taking the majority vote of samples in a leaf, we calculate the mean target value of the samples



# **Benefits & challenges of trees**

#### Benefits

- Highly interpretable
- Train quickly
- Handle non-linear relationships well
- Do not require scaling or one-hot encoding variables

# **Benefits & challenges of trees**

#### Challenges

- Highly sensitive to hyperparameters (tree depth)
- Very prone to overfitting



#### **Ensemble Models**



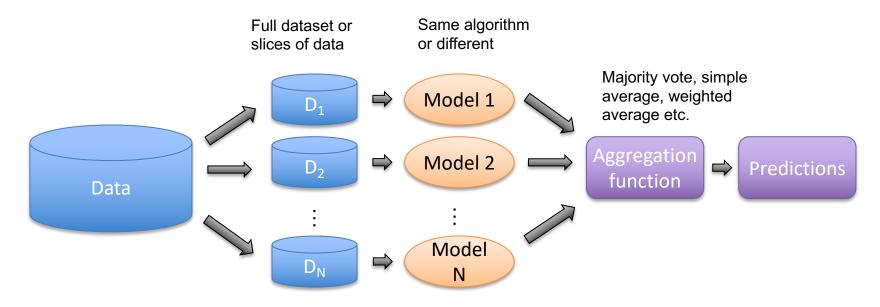
PRATT SCHOOL of ENGINEERING

## **Ensemble models**

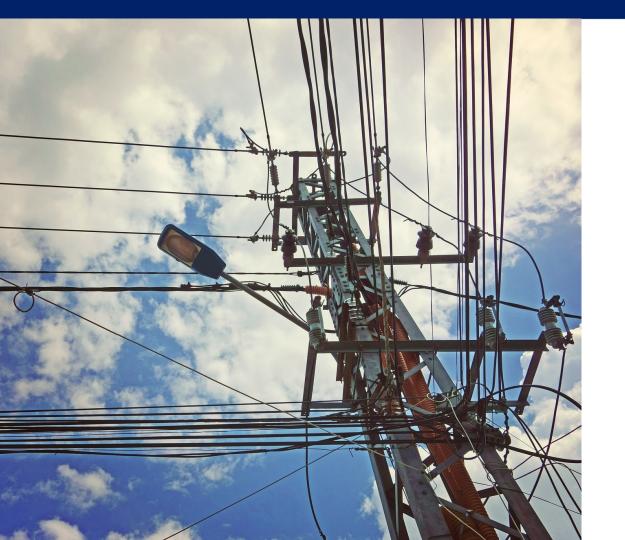
- Goal is to combine multiple models together into a meta-model that has better generalization performance
- Averaging multiple models makes the aggregate model less likely to overfit and better at generalizing to new data
  - If model outputs are independent (or close), the variance of the average prediction is lower than the variance of the individual model predictions

### **Ensemble models**

Goal of ensembling is to combine multiple models together into a metamodel that has better generalization performance







# **Challenges of ensemble models**

- Time and compute resources to train
- Computational cost of running multiple models
- Decrease in interpretability

outrageously **AMBITIOUS** 

#### Bagging and the Random Forest



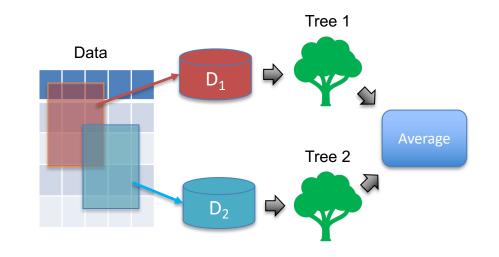
PRATT SCHOOL of ENGINEERING

# **Bootstrap aggregating (bagging)**

- In bagging, we use **bootstrapped** samples to train each model
  - Bootstrapping = sampling with replacement
  - We select the size of each bagging subset
- Because each model is trained on different data, their output predictions can be considered close to independent
- Thus, when we use the average of their predictions we reduce the variance

## From tree to random forest

- Decision trees tend to overfit
- We can grow several trees and take the majority vote
- We use bagging to ensure each tree is trained on a different subset
- To predict on new data, we take the majority vote / simple average



# **Random Forest design**

- 1. Number of trees in the forest
- 2. Sampling strategy for bagging
  - Bagging sample size as % of total rows in training set
  - Max % of features represented in each bagging sample

#### 3. Depth of trees

- Maximum depth
- Minimum samples per leaf



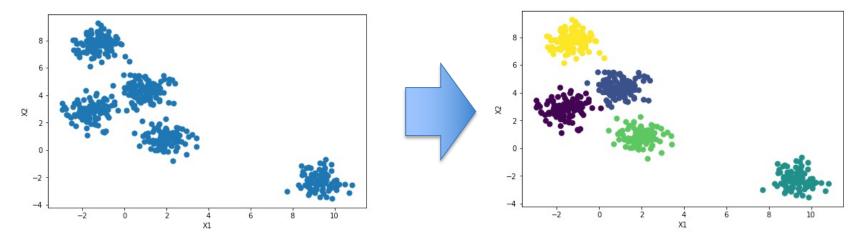
### Clustering



PRATT SCHOOL of ENGINEERING

# What is clustering?

- A technique used to organize data points into logical groups without using explicit group labels
- Sorts similar data points into the same clusters, and different points into different clusters









# **Determining similarity**

How do we determine whether things are similar or different?

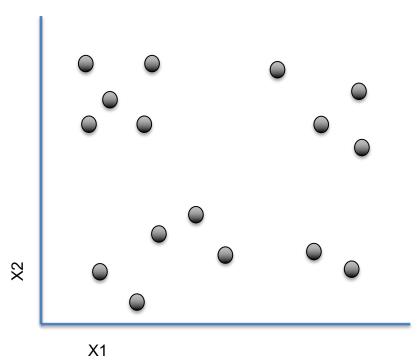
- 1. What is our basis for similarity?
- 2. How do we calculate similarity?







PRATT SCHOOL of ENGINEERING



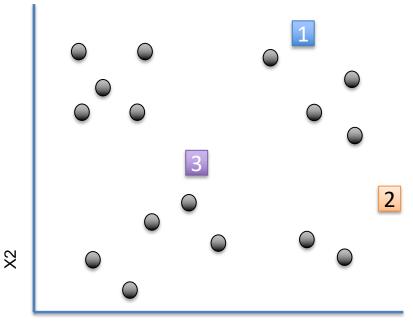
K-Means clustering groups points into clusters based on distance from the nearest cluster center

#### **Objective**:

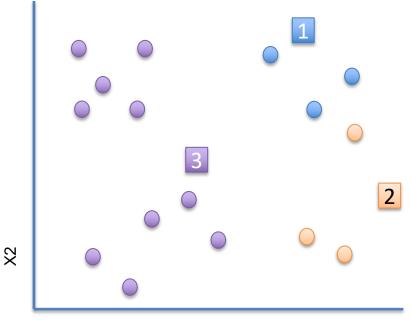
Minimize the sum of the distances from each point to its assigned cluster center

$$\min\sum_{i=1}^k \sum_{x \in S_i} ||x - \mu_i||$$

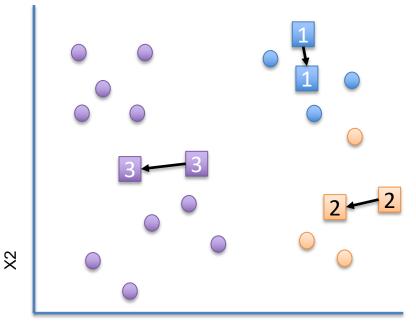
 $\mu_i$  is the center in cluster  $S_i$ 



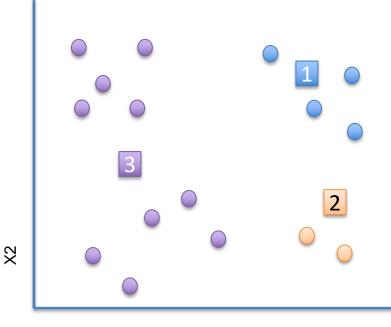
Step 1: Select the number of clusters (k) and randomly select locations for each cluster center



Step 2: Assign each datapoint to the cluster associated with the nearest cluster center

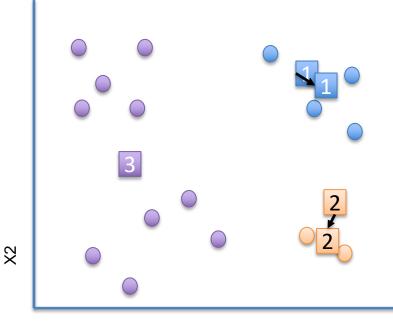


Step 3: Move the cluster centers to the mean location of the assigned points in the cluster



Repeat steps 2-3 until no cluster centers move:

- Assign points to nearest cluster center
- Update location of each cluster center to mean location



Repeat steps 2-3 until no cluster centers move:

- Assign points to nearest cluster center
- Update location of each cluster center to mean location

### **K-Means Strengths & Weaknesses**

#### **Strengths**

- Easy to implement
- Quick to converge
- Often a very good starting point for clustering tasks

#### <u>Weaknesses</u>

- Requires user to specify the number of clusters in advance
- Forms linear boundaries does not work well for geographically complex data





### Wrap-up



PRATT SCHOOL of ENGINEERING

# Wrap Up

- As we evaluate supervised learning algorithms on a given problem, we should consider:
  - Performance
  - Interpretability
  - Computational cost
- For unsupervised learning, an important consideration is how we define similarity