
outrageously **AMBITIOUS**

Module 5: Trees, Ensemble Models and Clustering

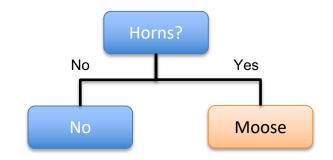
PRATT SCHOOL of ENGINEERING

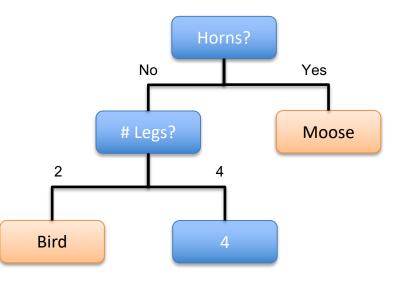
Supervised Learning Algorithms

Module 5 Objectives:

At the conclusion of this module, you should be able to:

- 1) Describe how tree-based models differ from linear models
- 2) Identify the advantages of ensemble models and how they are assembled
- 3) Explain what clustering is and how K-Means clustering works


Tree Models


PRATT SCHOOL of ENGINEERING

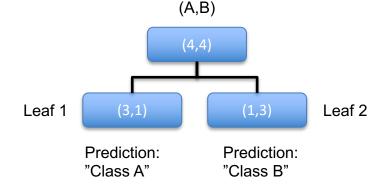
	Horns	Color	# Legs	Label
Animal 1	No	Brown	4	Dog
Animal 2	No	Green	4	Lizard
Animal 3	No	Black	2	Bird
Animal 4	Yes	Brown	4	Moose

	Horns	Color	# Legs	Label
Animal 1	No	Brown	4	Dog
Animal 2	No	Green	4	Lizard
Animal 3	No	Black	2	Bird
Animal 4	Yes	Brown	4	Moose

	Horns	Color	# Legs	Label
Animal 1	No	Brown	4	Dog
Animal 2	No	Green	4	Lizard
Animal 3	No	Black	2	Bird
Animal 4	Yes	Brown	4	Moose

	Horns	Color	# Legs	Label
Animal 1	No	Brown	4	Dog
Animal 2	No	Green	4	Lizard
Animal 3	No	Black	2	Bird
Animal 4	Yes	Brown	4	Moose

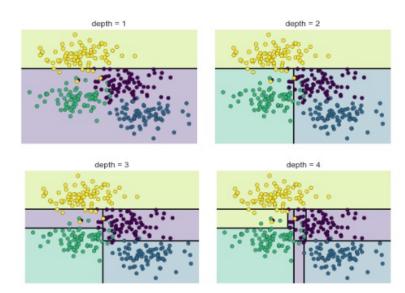
How to choose the splits


- Goal is to build the most efficient tree the one that splits the data using the minimum number of splits
- We define an objective function to optimize via the decision tree
- Our objective function is to maximize the **Information Gain (IG)** at each split:

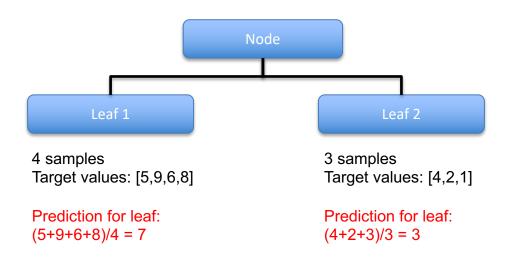
IG = Decrease in impurity

= Impurity(Parent) - Impurity(Children)

Getting predictions from the tree


- We continue splitting the tree until we cannot split any further or we stop
- The bottom nodes are called "leaves"
- We take the majority average class and label all examples at the leaf with that class

Tree depth


- Depth of our tree (max # of splits of a branch) is a hyperparameter
- Very shallow trees will underfit the data
- Deep trees will overfit the data (every example ends up as own leaf)

Regression trees

Rather than taking the majority vote of samples in a leaf, we calculate the mean target value of the samples

Benefits & challenges of trees

Benefits

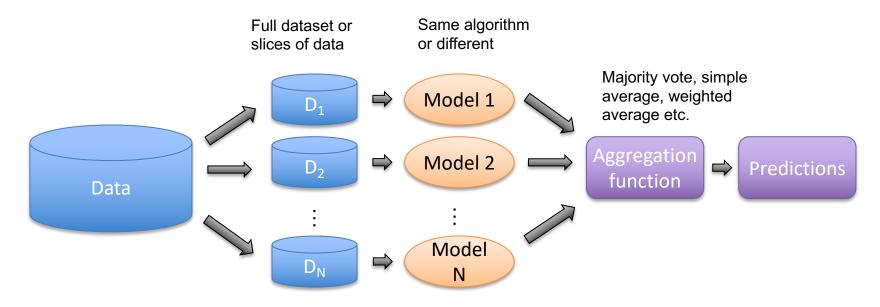
- Highly interpretable
- Train quickly
- Handle non-linear relationships well
- Do not require scaling or one-hot encoding variables

Benefits & challenges of trees

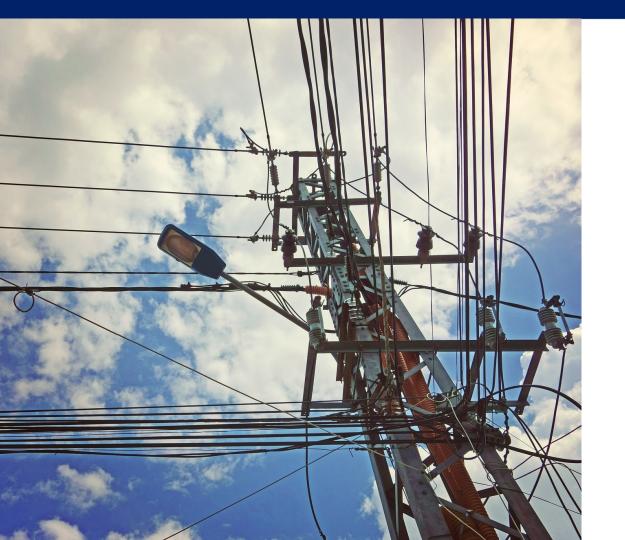
Challenges

- Highly sensitive to hyperparameters (tree depth)
- Very prone to overfitting

Ensemble Models


PRATT SCHOOL of ENGINEERING

Ensemble models


- Goal is to combine multiple models together into a meta-model that has better generalization performance
- Averaging multiple models makes the aggregate model less likely to overfit and better at generalizing to new data
 - If model outputs are independent (or close), the variance of the average prediction is lower than the variance of the individual model predictions

Ensemble models

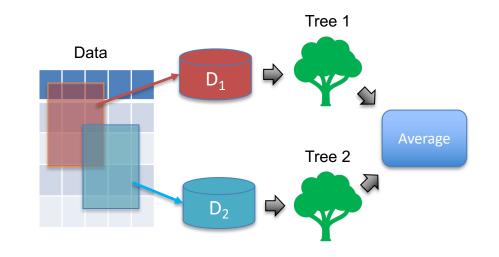
Goal of ensembling is to combine multiple models together into a metamodel that has better generalization performance

Challenges of ensemble models

- Time and compute resources to train
- Computational cost of running multiple models
- Decrease in interpretability

outrageously **AMBITIOUS**

Bagging and the Random Forest


PRATT SCHOOL of ENGINEERING

Bootstrap aggregating (bagging)

- In bagging, we use **bootstrapped** samples to train each model
 - Bootstrapping = sampling with replacement
 - We select the size of each bagging subset
- Because each model is trained on different data, their output predictions can be considered close to independent
- Thus, when we use the average of their predictions we reduce the variance

From tree to random forest

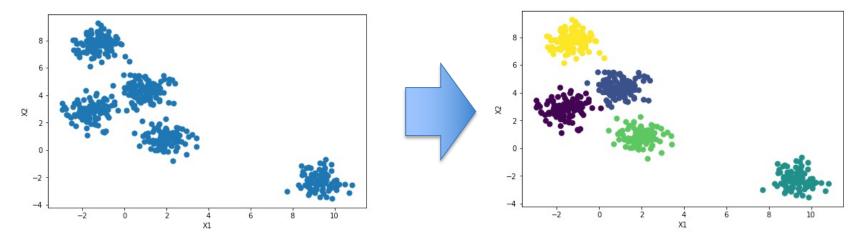
- Decision trees tend to overfit
- We can grow several trees and take the majority vote
- We use bagging to ensure each tree is trained on a different subset
- To predict on new data, we take the majority vote / simple average

Random Forest design

- 1. Number of trees in the forest
- 2. Sampling strategy for bagging
 - Bagging sample size as % of total rows in training set
 - Max % of features represented in each bagging sample

3. Depth of trees

- Maximum depth
- Minimum samples per leaf


Clustering

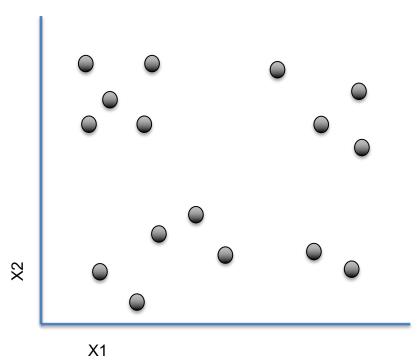
PRATT SCHOOL of ENGINEERING

What is clustering?

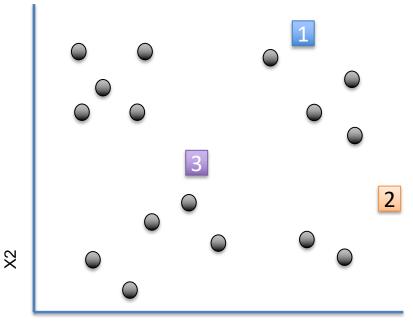
- A technique used to organize data points into logical groups without using explicit group labels
- Sorts similar data points into the same clusters, and different points into different clusters

Determining similarity

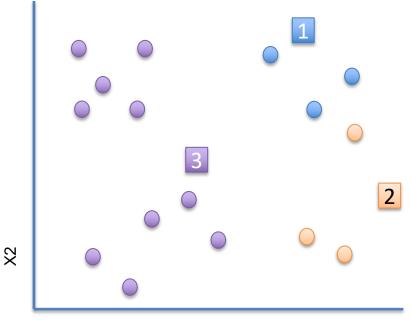
How do we determine whether things are similar or different?


- 1. What is our basis for similarity?
- 2. How do we calculate similarity?

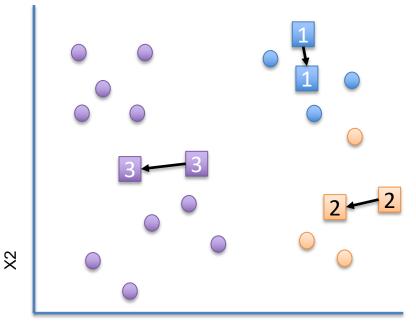
PRATT SCHOOL of ENGINEERING

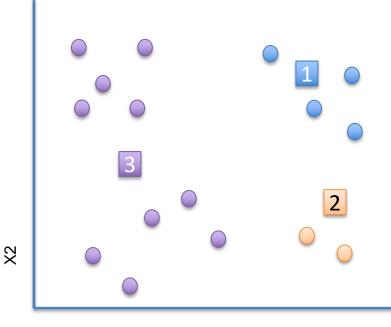

K-Means clustering groups points into clusters based on distance from the nearest cluster center

Objective:

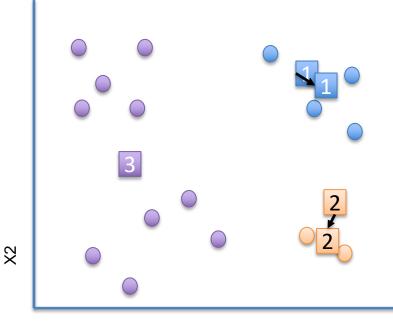

Minimize the sum of the distances from each point to its assigned cluster center

$$\min\sum_{i=1}^k \sum_{x \in S_i} ||x - \mu_i||$$


 μ_i is the center in cluster S_i


Step 1: Select the number of clusters (k) and randomly select locations for each cluster center

Step 2: Assign each datapoint to the cluster associated with the nearest cluster center



Step 3: Move the cluster centers to the mean location of the assigned points in the cluster

Repeat steps 2-3 until no cluster centers move:

- Assign points to nearest cluster center
- Update location of each cluster center to mean location

Repeat steps 2-3 until no cluster centers move:

- Assign points to nearest cluster center
- Update location of each cluster center to mean location

K-Means Strengths & Weaknesses

Strengths

- Easy to implement
- Quick to converge
- Often a very good starting point for clustering tasks

<u>Weaknesses</u>

- Requires user to specify the number of clusters in advance
- Forms linear boundaries does not work well for geographically complex data

Wrap-up

PRATT SCHOOL of ENGINEERING

Wrap Up

- As we evaluate supervised learning algorithms on a given problem, we should consider:
 - Performance
 - Interpretability
 - Computational cost
- For unsupervised learning, an important consideration is how we define similarity