
Module 4: Linear Models



Types of Algorithms

• Assumes a known form to model 
the input – output relationship

• Learns a fixed, pre-determined set 
of parameters/coefficients

• Can learn quickly and work well 
even on small data

• Constrained to the specified form, 
prone to underfitting

Parametric algorithms



Types of Algorithms
Non-Parametric algorithms

• Does not make strong assumption 
about the form of the input-output 
relationship

• Highly flexible to model non-linear, 
complex data

• Can result in higher performance in 
prediction

• Require more data to train and are 
prone to overfitting



Supervised Learning Algorithms

Parametric

Non-
Parametric

Simple Complex

Regression

Classification

Both

Linear regression
Ridge regression
Lasso regression
Logistic regression
Naïve Bayes

Linear SVM
Perceptron
Neural networks*

Decision trees
K Nearest Neighbors

AdaBoost
Random forest



Module 4 Objectives:
At the conclusion of this module, you 
should be able to:

1) Explain how linear regression works

2) Describe the differences between linear 
and logistic regression

3) Discuss the benefits and types of 
regularization



Linear Regression



What is linear regression
Model which assumes linear relationships 
between features and targets, defined by a set 
of coefficients



Why linear regression?
• Forms the basis of more complex ML 

models

• Can be surprisingly effective if used 
properly

• Great first model to apply to get a 
benchmark

• Helps us understand relationships 
between inputs and outputs (feature 
and targets)



Simple vs. multiple linear regression 

y = 𝑤0 + 𝑤1x

Number 
of 

bedrooms

House 
sale price

Simple linear regression

Bias Coefficient / weight



Simple vs. multiple linear regression 

y = 𝑤0 + 𝑤1x1 + 𝑤2x2 +…+wpxp

Number 
of 

bedrooms

House 
sale price

Square 
footage

…
School 
district

Multiple linear regression



Estimating the parameters

We seek a model function that minimizes 
total error ∑!"#$ ( $𝑦! − 𝑦!), or alternatively the 
Sum of Squared Error (SSE) ∑!"#$ ( $𝑦! − 𝑦!)%

x

y

Error(𝑥!) = $𝑦! − 𝑦!

!𝑦 = 𝑤0 + 𝑤1x1 …+ 𝑤pxp 



Estimating the parameters
• SSE is our cost function (loss function)

• In modeling, we seek to find values for 
parameters wo, w1…wi which minimize 
our cost function

• We can use the training data to solve for 
the parameters that minimize the cost

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐽 𝑤 =3
!"#

$

( $𝑦! − 𝑦!)%



Non-linear relationships
• To model a nonlinear relationship, we can transform the feature by 

some nonlinear function to create a new feature:

z = 𝑥& OR z = log(x)

• We can then use our new feature z as an input to our model

• If we can model our target as a linear function of our new feature z, our 
model performance should be improved

• This is called polynomial regression



Example: Predicting fuel efficiency



Example: Predicting fuel efficiency



Regularization



Motivation for Regularization
• The training method we have been using 

tends to reward complexity / overfitting

• However, complex models have higher 
variance and thus may not predict as 
well on new data

• How can we build a regression model in 
a more balanced way?

– We add a penalty factor to our cost 
function to penalize feature complexity



Regularization

• We add a penalty term that is a function of the sum of the coefficients

• Now, higher number or values of coefficients increases the cost function

• Minimizing this new cost function seeks optimal balance of fit and simplicity

𝐽 𝑤 =&
!"#

$

(𝑦! − 𝑤% + 𝑤#𝑥!,# +⋯+𝑤'𝑥!,' )(+𝜆 ∗ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑤#…𝑤')

𝐽 𝑤 = 𝑆𝑆𝐸 =&
!"#

$

(𝑦! − 𝑤% + 𝑤#𝑥!,# +⋯+𝑤'𝑥!,' )(Linear regression cost 
function:

Cost function with 
regularization:

𝜆 controls strength of the penalty



LASSO & Ridge Regression

• Forces coefficients to 0 if not 
relevant
– Performs feature selection by 

removing unimportant features

𝐽 𝑤 =&
!"#

$

(𝑦! − !𝑦!)(+𝜆&
)"#

'

|𝑤)|

LASSO Regression



LASSO & Ridge Regression

• Forces coefficients of irrelevant 
variables to be small but not to 0
– Does not perform feature 

selection

𝐽 𝑤 =&
!"#

$

(𝑦! − !𝑦!)(+𝜆&
)"#

'

𝑤)(

Ridge Regression



Conclusion: Regularization
• Applying regularization will often give 

us a better model when we are 
dealing with complex data 

• You might have a reason to prefer 
one method or the other:
– Desire a simpler, more interpretable 

model -> LASSO

– Complex relationship of target to 
many features with collinearity -> 
Ridge



Logistic Regression



Let’s Tackle a Classification Problem
• We now want to predict a class (e.g. 0 or 1) 

rather than a numerical target
• We could use linear regression to do so

x

y

y=1

y=0

!𝑦 = 𝑤0 + 𝑤#𝑥#



Problems
• The linear regression will almost always 

predict the wrong value
• How do we interpret predictions between 0 

and 1?
• What about predictions greater than 1?

x

y

y=1

y=0

$𝑦 = 𝑤0 + 𝑤"𝑥"



Solution: Predict the Probability y=1
• Rather than predicting y, let’s predict 

the probability P(y=1),

• To do so we need a function that 
predicts outputs between 0 and 1

• We use the logistic/sigmoid function

𝜎(𝑧) =
1

1 + 𝑒'(



Solution: Predict the Probability y=1
• Desired model output is P(y=1)

• We use the sigmoid function to get outputs 
between 0 and 1

• As input to the sigmoid we provide the 
output of our linear regression (w0+w1x) 

𝑧 = 𝑤!𝑥 𝜎(𝑧)

𝑥#
𝑥"

𝑥$

𝑥%

…

𝑤#
𝑤"
𝑤$
𝑤…
𝑤%

𝑧
𝑃 𝑦 = 1

X



Estimating the parameters
To find the optimal values of w1…wp:

1. Define our cost function J(w)

2. Find the weight/coefficient values 
that minimize the cost function

1. Calculate the derivative (gradient)

2. Set the gradient equal to 0

3. Solve for the coefficients using 
gradient descent



Gradient descent
• Suppose we want to minimize a function 

such as 𝑦 = 𝑥.

• We start at some point on the curve and 
move iteratively towards the minimum

– Move in the direction opposite the 
gradient

– Move by some small value (called the 
learning rate or 𝜂) multiplied by the 
gradient

• We continue until we find the minimum 
or reach a set number of iterations

Gradient 
points this 
way

We move the 
opposite way



Estimating the parameters
1. Define our cost function 𝐽(𝑤)

2. Use gradient descent to find the values 
of the weights that minimize the cost

– Calculate gradient of the cost function

– Iteratively update the weights using 
gradient descent:

– Repeat until we reach a minimum cost

𝑤)*# = 𝑤) − 𝜂 ∗ ∇𝐽(𝑤))



Softmax Regression



Predicting multiple classes
• Logistic regression function gave us the probability of the positive class
• But what if we have several classes?
• Instead of the sigmoid function, we use the softmax function to give us the 

probability of belonging to each class (normalized to sum to 1)

𝑃 𝑦! = 𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑤+,𝑥

𝑧" = 𝑤"!𝑥
𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝑧')

𝑃(𝑦 = 𝑘)

𝑥#
𝑥"

𝑥$

…

𝑤'#

𝑧'

𝑃 𝑦! = 1 = 𝜎 𝑤,𝑥

𝑧 = 𝑤!𝑥 𝜎(𝑧) 𝑃(𝑦 = 1)

𝑥#
𝑥"

𝑥$

𝑥%

…

𝑤#
𝑤"
𝑤$
𝑤…
𝑤%

𝑧

Binary (2 classes) Multiclass

𝑥%

For each class k:
𝑤'"

𝑤'$

𝑤'…

𝑤'
%

X X



Predicting multiple classes

𝑧" = 𝑤"!𝑥
𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝑧')

𝑃(𝑦 = 𝑘)

𝑥#
𝑥"

𝑥$

…

𝑤'#

𝑧'

𝑥%

For each class k:
𝑤'"

𝑤'$

𝑤'…

𝑤'
%

X

Dog: 0.8
Cat: 0.05
Rabbit: 0.05
Bear: 0.1



Wrap-Up



Wrap-Up: Linear Models
• The mathematical intuition behind 

linear models is the foundation of 
neural networks

• Linear models are a good starting 
point for modeling efforts

• Their capability is limited somewhat 
by their linear form


