
Module 4: Linear Models

Types of Algorithms

• Assumes a known form to model
the input – output relationship

• Learns a fixed, pre-determined set
of parameters/coefficients

• Can learn quickly and work well
even on small data

• Constrained to the specified form,
prone to underfitting

Parametric algorithms

Types of Algorithms
Non-Parametric algorithms

• Does not make strong assumption
about the form of the input-output
relationship

• Highly flexible to model non-linear,
complex data

• Can result in higher performance in
prediction

• Require more data to train and are
prone to overfitting

Supervised Learning Algorithms

Parametric

Non-
Parametric

Simple Complex

Regression

Classification

Both

Linear regression
Ridge regression
Lasso regression
Logistic regression
Naïve Bayes

Linear SVM
Perceptron
Neural networks*

Decision trees
K Nearest Neighbors

AdaBoost
Random forest

Module 4 Objectives:
At the conclusion of this module, you
should be able to:

1) Explain how linear regression works

2) Describe the differences between linear
and logistic regression

3) Discuss the benefits and types of
regularization

Linear Regression

What is linear regression
Model which assumes linear relationships
between features and targets, defined by a set
of coefficients

Why linear regression?
• Forms the basis of more complex ML

models

• Can be surprisingly effective if used
properly

• Great first model to apply to get a
benchmark

• Helps us understand relationships
between inputs and outputs (feature
and targets)

Simple vs. multiple linear regression

y = 𝑤0 + 𝑤1x

Number
of

bedrooms

House
sale price

Simple linear regression

Bias Coefficient / weight

Simple vs. multiple linear regression

y = 𝑤0 + 𝑤1x1 + 𝑤2x2 +…+wpxp

Number
of

bedrooms

House
sale price

Square
footage

…
School
district

Multiple linear regression

Estimating the parameters

We seek a model function that minimizes
total error ∑!"#$ ($𝑦! − 𝑦!), or alternatively the
Sum of Squared Error (SSE) ∑!"#$ ($𝑦! − 𝑦!)%

x

y

Error(𝑥!) = $𝑦! − 𝑦!

!𝑦 = 𝑤0 + 𝑤1x1 …+ 𝑤pxp

Estimating the parameters
• SSE is our cost function (loss function)

• In modeling, we seek to find values for
parameters wo, w1…wi which minimize
our cost function

• We can use the training data to solve for
the parameters that minimize the cost

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐽 𝑤 =3
!"#

$

($𝑦! − 𝑦!)%

Non-linear relationships
• To model a nonlinear relationship, we can transform the feature by

some nonlinear function to create a new feature:

z = 𝑥& OR z = log(x)

• We can then use our new feature z as an input to our model

• If we can model our target as a linear function of our new feature z, our
model performance should be improved

• This is called polynomial regression

Example: Predicting fuel efficiency

Example: Predicting fuel efficiency

Regularization

Motivation for Regularization
• The training method we have been using

tends to reward complexity / overfitting

• However, complex models have higher
variance and thus may not predict as
well on new data

• How can we build a regression model in
a more balanced way?

– We add a penalty factor to our cost
function to penalize feature complexity

Regularization

• We add a penalty term that is a function of the sum of the coefficients

• Now, higher number or values of coefficients increases the cost function

• Minimizing this new cost function seeks optimal balance of fit and simplicity

𝐽 𝑤 =&
!"#

$

(𝑦! − 𝑤% + 𝑤#𝑥!,# +⋯+𝑤'𝑥!,')(+𝜆 ∗ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑤#…𝑤')

𝐽 𝑤 = 𝑆𝑆𝐸 =&
!"#

$

(𝑦! − 𝑤% + 𝑤#𝑥!,# +⋯+𝑤'𝑥!,')(Linear regression cost
function:

Cost function with
regularization:

𝜆 controls strength of the penalty

LASSO & Ridge Regression

• Forces coefficients to 0 if not
relevant
– Performs feature selection by

removing unimportant features

𝐽 𝑤 =&
!"#

$

(𝑦! − !𝑦!)(+𝜆&
)"#

'

|𝑤)|

LASSO Regression

LASSO & Ridge Regression

• Forces coefficients of irrelevant
variables to be small but not to 0
– Does not perform feature

selection

𝐽 𝑤 =&
!"#

$

(𝑦! − !𝑦!)(+𝜆&
)"#

'

𝑤)(

Ridge Regression

Conclusion: Regularization
• Applying regularization will often give

us a better model when we are
dealing with complex data

• You might have a reason to prefer
one method or the other:
– Desire a simpler, more interpretable

model -> LASSO

– Complex relationship of target to
many features with collinearity ->
Ridge

Logistic Regression

Let’s Tackle a Classification Problem
• We now want to predict a class (e.g. 0 or 1)

rather than a numerical target
• We could use linear regression to do so

x

y

y=1

y=0

!𝑦 = 𝑤0 + 𝑤#𝑥#

Problems
• The linear regression will almost always

predict the wrong value
• How do we interpret predictions between 0

and 1?
• What about predictions greater than 1?

x

y

y=1

y=0

$𝑦 = 𝑤0 + 𝑤"𝑥"

Solution: Predict the Probability y=1
• Rather than predicting y, let’s predict

the probability P(y=1),

• To do so we need a function that
predicts outputs between 0 and 1

• We use the logistic/sigmoid function

𝜎(𝑧) =
1

1 + 𝑒'(

Solution: Predict the Probability y=1
• Desired model output is P(y=1)

• We use the sigmoid function to get outputs
between 0 and 1

• As input to the sigmoid we provide the
output of our linear regression (w0+w1x)

𝑧 = 𝑤!𝑥 𝜎(𝑧)

𝑥#
𝑥"

𝑥$

𝑥%

…

𝑤#
𝑤"
𝑤$
𝑤…
𝑤%

𝑧
𝑃 𝑦 = 1

X

Estimating the parameters
To find the optimal values of w1…wp:

1. Define our cost function J(w)

2. Find the weight/coefficient values
that minimize the cost function

1. Calculate the derivative (gradient)

2. Set the gradient equal to 0

3. Solve for the coefficients using
gradient descent

Gradient descent
• Suppose we want to minimize a function

such as 𝑦 = 𝑥.

• We start at some point on the curve and
move iteratively towards the minimum

– Move in the direction opposite the
gradient

– Move by some small value (called the
learning rate or 𝜂) multiplied by the
gradient

• We continue until we find the minimum
or reach a set number of iterations

Gradient
points this
way

We move the
opposite way

Estimating the parameters
1. Define our cost function 𝐽(𝑤)

2. Use gradient descent to find the values
of the weights that minimize the cost

– Calculate gradient of the cost function

– Iteratively update the weights using
gradient descent:

– Repeat until we reach a minimum cost

𝑤)*# = 𝑤) − 𝜂 ∗ ∇𝐽(𝑤))

Softmax Regression

Predicting multiple classes
• Logistic regression function gave us the probability of the positive class
• But what if we have several classes?
• Instead of the sigmoid function, we use the softmax function to give us the

probability of belonging to each class (normalized to sum to 1)

𝑃 𝑦! = 𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑤+,𝑥

𝑧" = 𝑤"!𝑥
𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝑧')

𝑃(𝑦 = 𝑘)

𝑥#
𝑥"

𝑥$

…

𝑤'#

𝑧'

𝑃 𝑦! = 1 = 𝜎 𝑤,𝑥

𝑧 = 𝑤!𝑥 𝜎(𝑧) 𝑃(𝑦 = 1)

𝑥#
𝑥"

𝑥$

𝑥%

…

𝑤#
𝑤"
𝑤$
𝑤…
𝑤%

𝑧

Binary (2 classes) Multiclass

𝑥%

For each class k:
𝑤'"

𝑤'$

𝑤'…

𝑤'
%

X X

Predicting multiple classes

𝑧" = 𝑤"!𝑥
𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝑧')

𝑃(𝑦 = 𝑘)

𝑥#
𝑥"

𝑥$

…

𝑤'#

𝑧'

𝑥%

For each class k:
𝑤'"

𝑤'$

𝑤'…

𝑤'
%

X

Dog: 0.8
Cat: 0.05
Rabbit: 0.05
Bear: 0.1

Wrap-Up

Wrap-Up: Linear Models
• The mathematical intuition behind

linear models is the foundation of
neural networks

• Linear models are a good starting
point for modeling efforts

• Their capability is limited somewhat
by their linear form

