outrageously **AMBITIOUS**

Module 2: The Modeling Process

Module 2 Objectives:

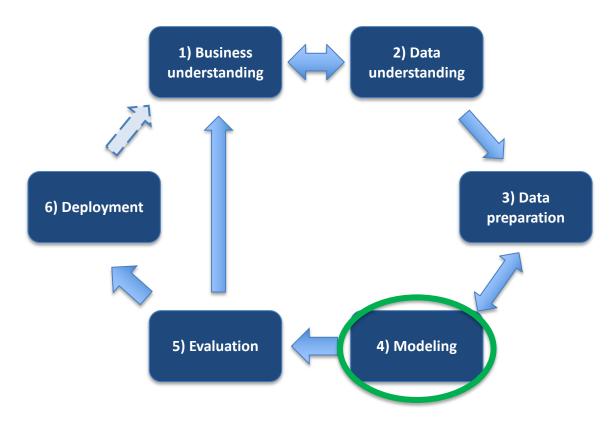
At the conclusion of this week, you should be able to:

- 1) Describe the steps to develop a ML model
- 2) Explain the bias-variance tradeoff
- 3) Identify possible sources of data leakage and strategies to prevent it

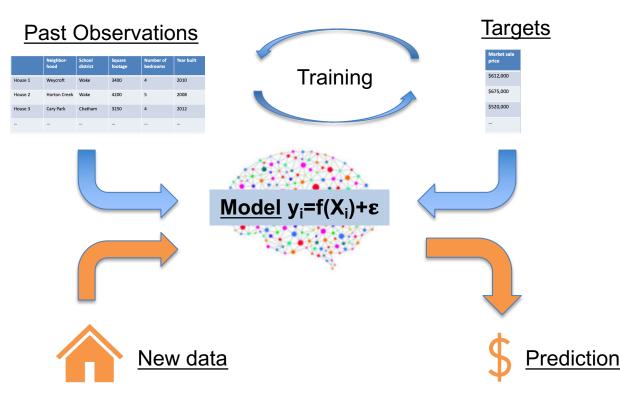
outrageously **AMBITIOUS**

Building a Model

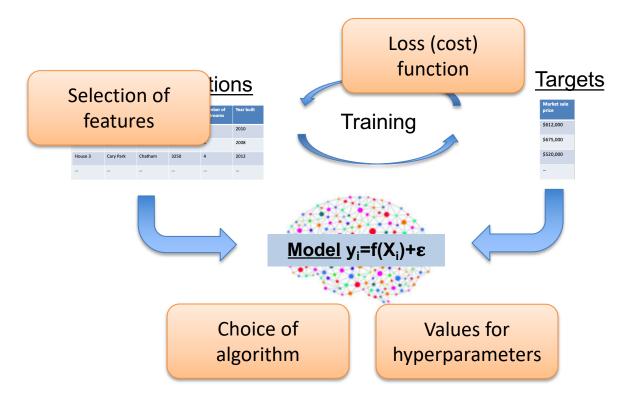
CRISP-DM Process



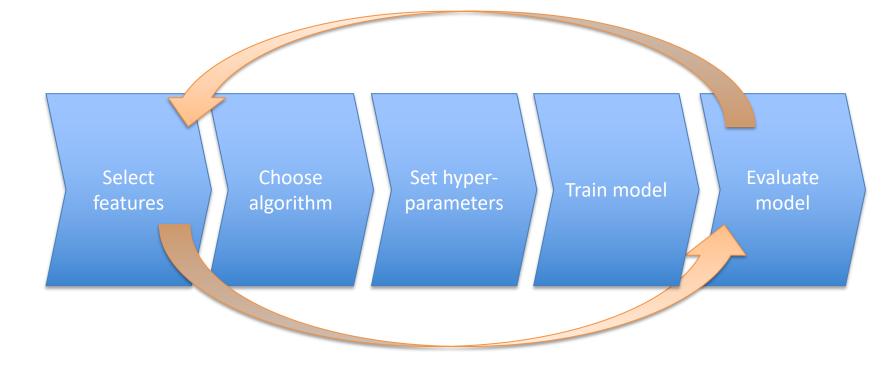
Creating a Model



Components of a Model



Modeling Process



Feature Selection

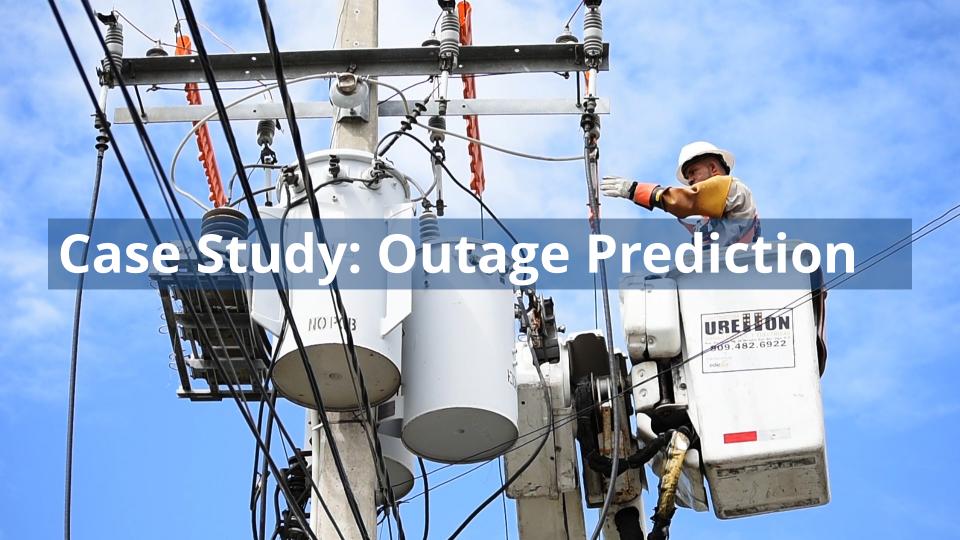
What are Features?

	<u>Features</u>				
	Neighbor -hood	School district	Square footage	Number of bedrooms	Year built
House 1	Weycroft	Wake	3400	4	2010
House 2	Horton Creek	Wake	4200	5	2008
House 3	Cary Park	Chatham	3250	4	2012

How to Define Features

What factors might influence the problem?

What data do you have / can you collect?



Methods of Feature Selection

- Domain expertise
- Visualization
- Statistical correlations
- Modeling

Including too few features is usually much worse than including too many!

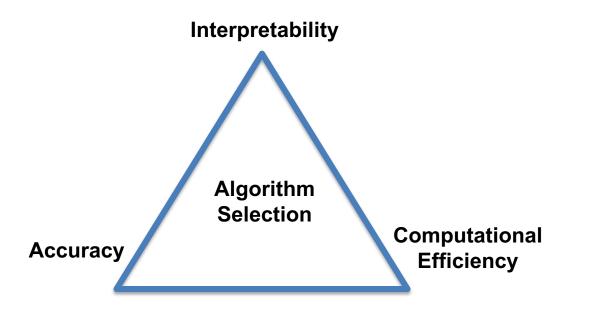
outrageously **AMBITIOUS**

Algorithm Selection

Algorithm Selection

"No free lunch theorem"

Algorithm Selection

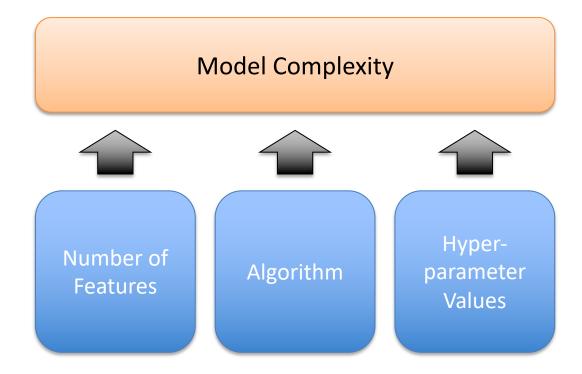


Netflix Example

https://netflixprize.com

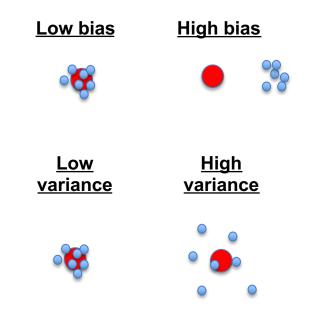
Bias – Variance Tradeoff

Model Complexity



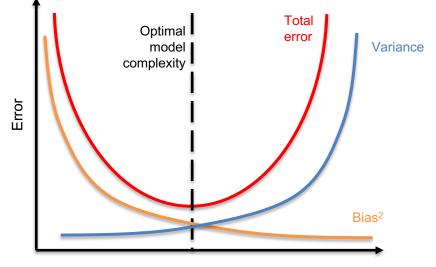
Bias and Variance

- **Bias** is error introduced by modeling a real life problem using a simpler model that is unable to fully capture the underlying patterns in data
- Variance refers to the sensitivity of the model to small fluctuations in the data, because it models fine patterns which may just be noise



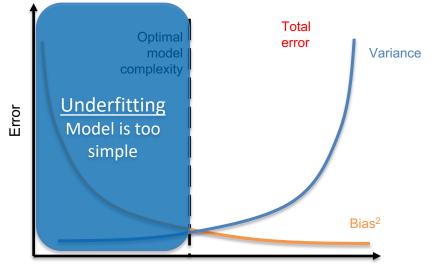
Bias – Variance Tradeoff

- Simpler models often have higher bias and lower variance
- Complex models typically have lower bias but higher variance
- Total Error = $Bias^2 + Var + \sigma_e^2$



Model complexity

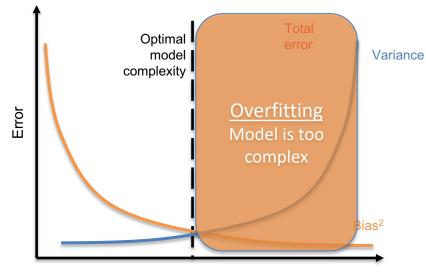
Underfitting vs. Overfitting



Model complexity

Image source: http://scott.fortmann-roe.com/docs/BiasVariance.html

Underfitting vs. Overfitting



Model complexity

Image source: http://scott.fortmann-roe.com/docs/BiasVariance.html

Underfitting vs. Overfitting

Overfitting Good Fit **Underfitting** Model is too Model fits well, Model is too simple with some error complex Model Model Model True function True function True function Samples Samples Samples >

х

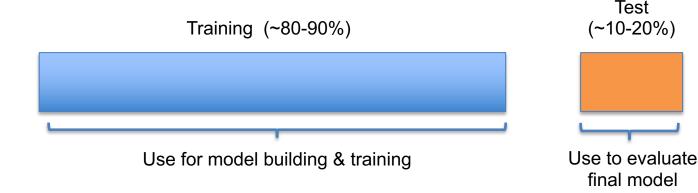
х

х

Test & Validation Sets

Training & Test Sets

- Goal of predictive modeling is to create a model that makes accurate predictions on new unseen data
- We cannot estimate performance on data we do not have, so instead we split our data into two sets
 - Training set build and train the model
 - **Test set** Evaluate model performance performance



Data Leakage

- "Data leakage" occurs when some of our test set data "leaks" into model building and influences the development of the model
- For example, if we use all of our data to select our features, or compare algorithms
- This **invalidates the estimated performance** of the model and causes it to be overoptimistic

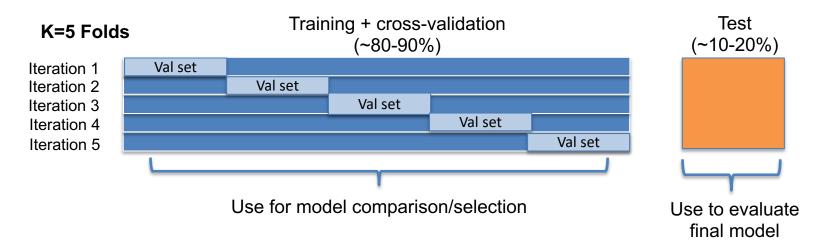
Validation Sets

- Often we want to compare models to select the optimal model
- If we use the test set to compare model performance, it is not longer an unbiased indicator of performance
- Instead, we split our training set further into training and validation sets
- We use the validation set for model selection, and report performance on the test set

Cross Validation

K-Folds Cross Validation

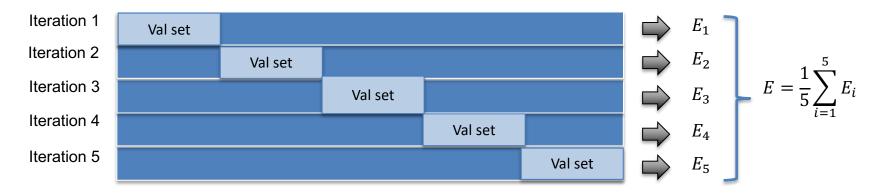
Rather than using a fixed validation set, we train and run the model(s) multiple times, each time using a different subset ("fold") as the validation set



K-Folds Cross Validation

We calculate the error on the validation fold for each iteration, and then average them together to get the average error

K=5 Folds



Benefits of Cross Validation

- Maximizes the data available for training the model important for small datasets
- Provides a better evaluation of how well the model can generalize to new data – validation performance is not biased by choice of datapoints to use for validation

Wrap-up

Wrap Up

- Modeling process is just one piece of the CRISP-DM process
- Model complexity comes from features, algorithm and hyperparameters
- Underfitting and overfitting are common modeling issues
- Test sets and validation sets ensure we properly select and evaluate models