Probability sampling methods

sampling. **Probability sampling** uses random selection to generate a <u>sample</u> 🔀. **Non-probability sampling** is often based on convenience, or the personal preferences of the researcher, rather than random selection. The sampling method you use helps determine if your sample is representative of your population, and if your sample is biased. Probability sampling gives you the best chance to create a sample that is representative of the population.

Earlier, you learned that there are two main types of sampling methods: probability sampling and non-probability

Probability Sampling Methods

In this reading, you'll learn more about the different methods of probability sampling, and the benefits and drawbacks

There are four different probability sampling methods:

Simple random sampling

Stratified random sampling

of each method.

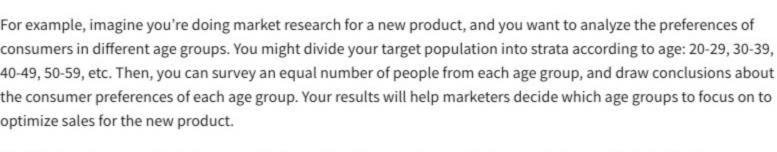
- Cluster random sampling
- Systematic random sampling Let's explore each method in more detail.
- Simple random sampling

In a simple random sample, every member of a population is selected randomly and has an equal chance of being

equal chance of being chosen for the sample.

chosen. You can randomly select members using a random number generator, or by another method of random selection.

Simple random sample


more reliable results. However, in practice, it's often expensive and time-consuming to collect large simple random samples. And if your sample size is not large enough, a specific group of people in the population may be underrepresented in your sample. If you use a larger sample size, your sample will more accurately reflect the population.

The main benefit of simple random samples is that they're usually fairly representative, since every member of the population has an equal chance of being chosen. Random samples tend to avoid bias, and surveys like these give you

Stratified random sampling In a stratified random sample, you divide a population into groups, and randomly select some members from each group to be in the sample. These groups are called strata. Strata can be organized by age, gender, income, or whatever

Stratified sample

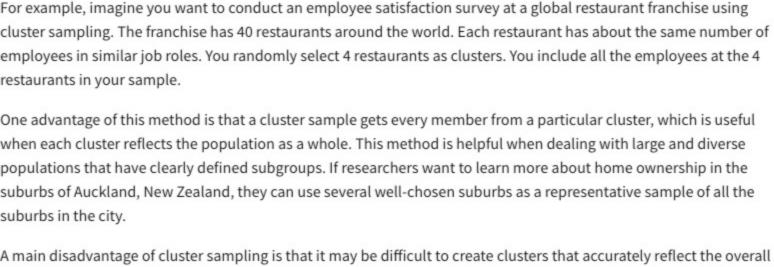
category you're interested in studying.

Stratified random samples help ensure that members from each group in the population are included in the survey. This method helps provide equal representation for underrepresented groups, and allows you to draw more precise conclusions about each of the strata. There may be significant differences in the purchasing habits of a 21-year-old and

a 51-year-old. Stratified sampling helps ensure that both perspectives are captured in the sample. One main disadvantage of stratified sampling is that it can be difficult to identify appropriate strata for a study if you lack knowledge of a population. For example, if you want to study median income among a population, you may want to stratify your sample by job type, or industry, or location, or education level. If you don't know how relevant these categories are to median income, it will be difficult to choose the best one for your study.

Cluster sampling is similar to stratified random sampling, but in stratified sampling, you randomly choose some members from each group to be in the sample. In cluster sampling, you choose all members from a group to be in the sample. Clusters are divided using identifying details, such as age, gender, location, or whatever you want to study.

Cluster sample

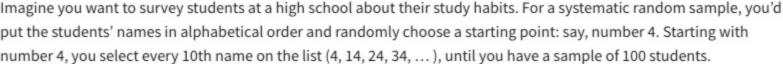

When you're conducting a cluster random sample, you divide a population into clusters, randomly select certain

clusters, and include all members from the chosen clusters in the sample.

employees in other countries.

Systematic random sampling

Cluster random sampling


population. For example, for practical reasons, you may only have access to restaurants in England when the franchise

has locations all over the world. And employees in England may have different characteristics and values than

random starting point in the sequence and select members for your sample at regular intervals.

Systematic sample

In a systematic random sample, you put every member of a population into an ordered sequence. Then, you choose a

One advantage of systematic random samples is that they're often representative of the population, since every

member has an equal chance of being included in the sample. Whether the student's last name starts with L or Q isn't going to affect their characteristics. Systematic sampling is also quick and convenient when you have a complete list of

One disadvantage of systematic sampling is that you need to know the size of the population that you want to study before you begin. If you don't have this information, it's difficult to choose consistent intervals. Plus, if there's a hidden pattern in the sequence, you might not get a representative sample. For example, if every 10th name on your list happens to be an honor student, you may only get feedback on the study habits of honor students – and not all students.

Key takeaways The four methods of probability sampling we've covered—simple, stratified, cluster, and systematic—are all based on random selection, which is the preferred method of sampling for most data professionals. Probability sampling methods give you the best chance to create a sample that is representative of the population as a whole. And working

with a representative sample allows you to make reliable inferences and accurate predictions about the population you're researching.

Mark as completed

Like Dislike

the members of your population.

Report an issue