[1]:

[2]:

Exemplar Explore probability distributions
March 14, 2024

1 Exemplar: Explore probability distributions

1.1 Introduction

The ability to determine which type of probability distribution best fits data, calculate z-score,
and detect outliers are essential skills in data work. These capabilities enable data professionals to
understand how their data is distributed and identify data points that need further examination.

In this activity, you are a member of an analytics team for the United States Environmental
Protection Agency (EPA). The data includes information about more than 200 sites, identified by
state, county, city, and local site names. One of your main goals is to determine which regions need
support to make air quality improvements. Given that carbon monoxide is a major air pollutant,
you will investigate data from the Air Quality Index (AQI) with respect to carbon monoxide.

1.2 Step 1: Imports
Import relevant libraries, packages, and modules. For this lab, you will need numpy, pandas,
matplotlib.pyplot, statsmodels.api, and scipy.

Import relevant libraries, packages, and modules.
YOUR CODE HERE

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import statsmodels.api as sm
from scipy import stats

A subset of data was taken from the air quality data collected by the EPA, then transformed to

suit the purposes of this lab. This subset is a .csv file named modified_c4_epa_air_quality.csv.
Load into a DataFrame.

Load data into a DataFrame and save in a variable.
YOUR CODE HERE

data = pd.read_csv("modified_c4_epa_air_quality.csv")

Hint 1

Refer to what you learned about loading data in Python.

Hint 2

There is a function in the pandas library that allows you to load data from a .csv file into a

DataFrame.

Hint 3

Use the read_csv() function and pass in the name of the csv file as a string.

1.3 Step 2: Data exploration

Display the first 10 rows of the data to get a sense of how the data is structured.

[3]:|# Display first 10 rows of the data.
YOUR CODE HERE
data.head(10)

[3]: date_local state_name county_name city_name
0 2018-01-01 Arizona Maricopa Buckeye
1 2018-01-01 Ohio Belmont Shadyside
2 2018-01-01 Wyoming Teton Not in a city
3 2018-01-01 Pennsylvania Philadelphia Philadelphia
4 2018-01-01 Towa Polk Des Moines
5 2018-01-01 Hawaii Honolulu Not in a city
6 2018-01-01 Hawaii Honolulu Not in a city
7 2018-01-01 Pennsylvania Erie Erie
8 2018-01-01 Hawaii Honolulu Honolulu
9 2018-01-01 Colorado Larimer Fort Collins

local_site_name parameter_name

0 BUCKEYE Carbon monoxide
1 Shadyside Carbon monoxide
2 Yellowstone National Park - 0ld Faithful Snow .. Carbon monoxide
3 North East Waste (NEW) Carbon monoxide
4 CARPENTER Carbon monoxide
5 Kapolei Carbon monoxide
6 Kapolei Carbon monoxide
7 NaN Carbon monoxide
8 Honolulu Carbon monoxide
9 Fort Collins - CSU - S. Mason Carbon monoxide

units_of_measure aqi_log

[4] :

[4] :

O Parts per million 2.079442
1 Parts per million 1.791759
2 Parts per million 1.098612
3 Parts per million 1.386294
4 Parts per million 1.386294
5 Parts per million 2.708050
6 Parts per million 1.098612
7 Parts per million 1.098612
8 Parts per million 1.791759
9 Parts per million 1.945910
Hint 1

Refer to what you learned about exploring datasets in Python.
Hint 2

There is a function in the pandas library that allows you to display a specific number of rows from
the top of a DataFrame.

Hint 3

Use the head () function and pass in how many rows from the top of the DataFrame you want to
display.

The aqi_log column represents AQI readings that were transformed logarithmically to suit the
objectives of this lab.

To better understand the quantity of data you are working with, display the number of rows and
the number of columns.

Display number of rows, number of columns.
YOUR CODE HERE

data.shape

(260, 8)

Hint 1
Refer to what you learned about exploring datasets in Python.
Hint 2

Every DataFrame in pandas has a property that gives you access to the number of rows and number
of columns in that DataFrame.

Hint 3

Call the shape property of the Datakrame, which will display the number of rows and the number
of columns as a tuple.

Now, you want to find out whether aqi_log fits a specific type of probability distribution. Create
a histogram to visualize the distribution of aqi_log. Then, based on its shape, visually determine
if it resembles a particular distribution.

[6]: # Create a histogram to visualize distribution of aqi_log.
YOUR CODE HERE

data["aqi_log"] .hist();

B0

Hint 1

Refer to the video about creating a histogram to visualize the distribution of a particular variable
in the data.

Hint 2

There is a function in the matplotlib library that can be called to create a histogram.
Hint 3

The hist () function can be called directly on the aqi_log column from the data.

A semicolon can be used at the end as a quick way to make sure only the plot gets displayed (other
text does not get displayed).

Question: What do you observe about the shape of the distribution from the histogram?

There is a slight right skew, but it still appears to be a bell shape. This shape suggests that the
distribution of this data should be approximately normal.

1.4 Step 3: Statistical tests

Use the empirical rule to observe the data, then test and verify that it is normally distributed.

As you have learned, the empirical rule states that, for every normal distribution: - 68% of the data
fall within 1 standard deviation of the mean - 95% of the data fall within 2 standard deviations of
the mean - 99.7% of the data fall within 3 standard deviations of the mean

First, define two variables to store the mean and standard deviation, respectively, for aqi_log. Cre-
ating these variables will help you easily access these measures as you continue with the calculations
involved in applying the empirical rule.

[6]: # Define wariable for agi_log mean.
YOUR CODE HERE

mean_aqi_log = datal["aqi_log"].mean()

Print out the mean.
YOUR CODE HERE
print(mean_aqi_log)
1.7669210929985577
[7]: # Define wariable for aqi_log standard deviation.
YOUR CODE HERE

std_aqi_log = data["aqi_log"]l.std()

Print out the standard deviation.
YOUR CODE HERE
print(std_aqi_log)

0.7147155520223721
Hint 1

Refer to the lesson about calculating the mean and standard deviation for a particular variable in
the data.

Hint 2

There are functions in the numpy library that can be called to calculate mean and standard deviation,
respectively.

[8]:

Hint 3

The mean() function can be called directly on the aqi_log column from the data to compute the
mean.

The std() function can be called directly on the aqi_log column from the data to compute the
standard deviation.

Now, check the first part of the empirical rule: whether 68% of the aqi_log data falls within 1
standard deviation of the mean.

To compute the actual percentage of the data that satisfies this criteria, define the lower limit
(for example, 1 standard deviation below the mean) and the upper limit (for example, 1 standard
deviation above the mean). This will enable you to create a range and confirm whether each value
falls within it.

Define wvariable for lower limit, 1 standard deviation below the mean.
YOUR CODE HERE

lower_limit = mean_aqi_log - 1 * std_aqi_log

Define wvariable for upper limit, 1 standard deviation above the mean.
YOUR CODE HERE

upper_limit = mean_aqi_log + 1 * std_aqi_log

Display lower_limit, upper_limit.
YOUR CODE HERE
print (lower_limit, upper_limit)

1.0522055409761855 2.48163664502093

Hint 1

Refer to the video about using the empirical rule.
Hint 2

The lower limit here is mean — 1 * std.

The upper limit here is mean + 1 * std.

The print function can be called to display.
Hint 3

Use the variables that you defined for mean and standard deviation of aqi_log, ensuring the
spelling is correct.

[9]:

[9]:

[10]:

Call the print function and pass in the values one after the other, with a comma between them.
Display the actual percentage of data that falls within 1 standard deviation
—of the mean.

YOUR CODE HERE

((data["aqi_log"] >= lower_limit) & (datal["aqi_log"] <= upper_limit)) .mean() *
—100

76.15384615384615

Hint 1

Refer to the video about using the empirical rule.

Hint 2

The >= operator can be used to confirm whether one value is greater than or equal to another value.
The <= operator can be used to check whether one value is less than or equal to another value.
The & operator can be used to check if one condition and another condition is met.

Hint 3

The mean () function can be used to compute the proportion of the data that satisfies the specified
conditions.

Multiplying that proportion by 100 can get you the percentage.

Now, consider the second part of the empirical rule: whether 95% of the aqi_log data falls within
2 standard deviations of the mean.

To compute the actual percentage of the data that satisfies this criteria, define the lower limit (for
example, 2 standard deviations below the mean) and the upper limit (for example, 2 standard
deviations above the mean). This will enable you to create a range and confirm whether each value
falls within it.

Define wartable for lower limit, 2 standard deviations below the mean.

YOUR CODE HERE

lower_limit = mean_aqi_log - 2 * std_aqi_log

Define wvariable for upper limit, 2 standard deviations below the mean.
YOUR CODE HERE

upper_limit = mean_aqi_log + 2 * std_aqi_log

[11]:

[11]:

Display lower_limit, upper_limit.
YOUR CODE HERE
print(lower_limit, upper_limit)

0.33748998895381344 3.1963521970433018
Hint 1

Refer to the video about using the empirical rule.
Hint 2

The lower limit here is mean — 2 * std.

The upper limit here is mean + 2 * std.

The print function can be called to display.
Hint 3

Use the variables that you defined for mean and standard deviation of aqi_log, ensuring the
spelling is correct.

Call the print function and pass in the values one after the other, with a comma between them.
Display the actual percentage of data that falls within 2 standard deviations,
—of the mean.

YOUR CODE HERE

((datal"aqi_log"] >= lower_limit) & (datal["aqi_log"] <= upper_limit)) .mean() *
—100

95.76923076923077

Hint 1

Refer to the video section about using the empirical rule.

Hint 2

The >= operator can be used to confirm whether one value is greater than or equal to another value.
The <= operator can be used to check whether one value is less than or equal to another value.
The & operator can be used to check if one condition and another condition is met.

Hint 3

The mean () function can be used to compute the proportion of the data that satisfies the specified
conditions.

Multiplying that proportion by 100 can get you the percentage.

Now, consider the third part of the empirical rule:whether 99.7% of the aqi_log data falls within
3 standard deviations of the mean.

To compute the actual percentage of the data that satisfies this criteria, define the lower limit (for
example, 3 standard deviations below the mean) and the upper limit (for example, 3 standard
deviations above the mean). This will enable you to create a range and confirm whether each value
falls within it.

[12]: | # Define wvariable for lower limit, 3 standard deviations below the mean.
YOUR CODE HERE

lower_limit = mean_aqi_log - 3 * std_aqi_log

Define wartable for upper limit, 3 standard deviations above the mean.
YOUR CODE HERE

upper_limit = mean_aqi_log + 3 * std_aqi_log

Display lower_limit, upper_limit.
YOUR CODE HERE
print(lower_limit, upper_limit)

-0.3772255630685586 3.911067749065674

Hint 1

Refer to the video about using the empirical rule.
Hint 2

The lower limit here is mean — 3 * std.

The upper limit here is mean + 3 * std.

The print function can be called to display.
Hint 3

Use the variables that you defined for mean and standard deviation of aqi_log, ensuring the
spelling is correct.

Call the print function and pass in the values one after the other, with a comma between them.

[13]: | # Display the actual percentage of data that falls within 3 standard deviations,
—of the mean.

YOUR CODE HERE

[13]:

[14]:

((datal["aqgi_log"] >= lower_limit) & (datal["aqi_log"] <= upper_limit)) .mean() *
—100

99.61538461538461

Hint 1

Refer to the video about using the empirical rule.

Hint 2

The >= operator can be used to confirm whether one value is greater than or equal to another value.
The <= operator can be used to check whether one value is less than or equal to another value.
The & operator can be used to check if one condition and another condition is met.

Hint 3

The mean () function can be used to compute the proportion of the data that satisfies the specified
conditions.

Multiplying that proportion by 100 can get you the percentage.

1.5 Step 4: Results and evaluation

Question: What results did you attain by applying the empirical rule? - About 76.15% of the data
falls within 1 standard deviation of the mean. - About 95.77% of the data falls within 2 standard
deviation of the mean. - About 99.62% of the data falls within 3 standard deviations of the mean.

The 95.77% is very close to 95%, and the 99.62% is very close to 99.7%. The 76.15% is not as close
to 68%, but relatively close. Overall, from applying the empirical rule, the data appears to be not
exactly normal, but could be considered approximately normal.

Question: How would you use z-score to find outliers?

Since z-score indicates the relative position of values (for instance, z-score measures how many
standard deviations below or above the mean a data point is), it can be used to detect outliers.

Z-score could be used to identify values that lie more than 3 standard deviations below or above
the mean. These values may be considered outliers.

Compute the z-score for every aqi_log value. Then, add a column named z_score in the data to
store those results.

Compute the z-score for every aqi_log value, and add a column named z_score,
—1n the data to store those results.

YOUR CODE HERE

data["z_score"] = stats.zscore(datal"aqi_log"]l, ddof=1) # ddof=degrees of
—freedom correction (sample vs. population)

10

[14]:

[15]:

Display the first 5 rows to ensure that the new column was added.

YOUR CODE HERE

data.head ()

date_local state_name county_name city_name \
0 2018-01-01 Arizona Maricopa Buckeye
1 2018-01-01 Ohio Belmont Shadyside
2 2018-01-01 Wyoming Teton Not in a city
3 2018-01-01 Pennsylvania Philadelphia Philadelphia
4 2018-01-01 Towa Polk Des Moines
local_site_name parameter_name
0 BUCKEYE Carbon monoxide
1 Shadyside Carbon monoxide
2 Yellowstone National Park - 01d Faithful Snow .. Carbon monoxide
3 North East Waste (NEW) Carbon monoxide
4 CARPENTER Carbon monoxide
units_of_measure aqi_log z_score
0 Parts per million 2.079442 0.437265
1 Parts per million 1.791759 0.034753
2 Parts per million 1.098612 -0.935070
3 Parts per million 1.386294 -0.532557
4 Parts per million 1.386294 -0.532557
Hint 1

Refer to the video about calculating z-score.

Hint 2

There is a function in the stats module of the scipy library that you can call to calculate z-score.

Hint 3

Call the zscore() function and pass in the agi column from the data.

Identify the parts of the data where aqi_log is above or below 3 standard deviations of the mean.

Display data where “aqi_log™ is above or below 3 standard deviations of the,

—mean

YOUR CODE HERE

data[(datal["z_score"] > 3) | (data["z_score"] < -3)]

11

[15]:

date_local state_name county_name city_name local_site_name \
244 2018-01-01 Arizona Maricopa Phoenix WEST PHOENIX

parameter_name units_of_measure aqi_log Z_score
244 Carbon monoxide Parts per million 3.931826 3.029044
Hint 1
Refer to the video about outlier detection.
Hint 2
The > operator can be used to evaluate whether one value is greater than another value.
The < operator can be used to evaluate whether one value is less than another value.
The | operator can used to evaluate whether one condition or another condition is met.
Hint 3

To index the DataFrame, place a pair of parantheses around the evaluation of the two conditions
and pass that into a pair of square brackets. This will allow you to get all rows in the data where
the specified criteria is met.

Make sure the spelling of the column matches the name you specified when creating that column.
Question: What do you observe about potential outliers based on the calculations?

The aqi_log for West Phoenix is slightly above 3 standard deviations of the mean. This means
that the air quality at that site is worse than the rest of the sites represented in the data.

Question: Why is outlier detection an important part of this project?

Detecting outliers is important because they can reveal two important things, depending on the
context: First, they can identify measurements that were taken incorrectly. Second, they can
highlight parts of the data that can be focused on to make improvements.

For example, if the aqi_log for West Phoenix is considered an outlier, then that site can be studied
further to determine what practices or changes might improve the air quality.

1.6 Considerations

What are some key takeaways that you learned during this lab?

e Plotting the data using a histogram, then observing the shape, enables you to visually deter-
mine whether the data is normally distributed.

e The empirical rule can be used to verify whether a distribution is normal.

e The mean and standard deviation are important measures when applying the empirical rule
to a distribution.

e Z-score allows you to identify potenial outliers in the data.

What summary would you provide to stakeholders? Consider the distribution of the
data and which sites would benefit from additional research. - The distribution of the
aqi_log data is approximately normal. - Using statistical methods, it was determined that the site

12

at West Phoenix has worse air quality than the other sites. - Consider allocating more resources
toward further examining this site in order to improve its air quality.

Reference

US EPA, OAR. 2014, July 8. Air Data: Air Quality Data Collected at Outdoor Monitors Across
the US.

Congratulations! You've completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

13

https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data

	Exemplar: Explore probability distributions
	Introduction
	Step 1: Imports
	Step 2: Data exploration
	Step 3: Statistical tests
	Step 4: Results and evaluation
	Considerations

