Annotated follow-along guide Work with probability distributions
in Python

March 13, 2024

1 Annotated follow-along guide: Work with probability distribu-
tions in Python

This notebook contains the code used in the following instructional video: Work with probability
distributions in Python.

1.1 Introduction

Throughout this notebook, we will use the normal distribution to model our data. We will also
compute z-scores to find any outliers in our data. Before getting started, watch the associated
instructional video and complete the in-video question. All of the code we will be implementing
and related instructions are contained in this notebook.

1.2 Overview

In this notebook, we will continue with the previous scenario in which you’re a data professional
working for the Department of Education of a large nation. Recall that we are analyzing data on
the literacy rate for each district, and we have already computed descriptive statistics to summarize
your data. For the next part of our analysis, we want to find out if the data on district literacy
rate fits a specific type of probability distribution.

1.3 Import packages and libraries

Before getting started, we will need to import all the required libraries and extensions. Throughout
the course, we will be using pandas and numpy for operations, and matplotlib for plotting. We will
also be using a Python package that may be new to you: SciPy stats.

SciPy is an open-source software you can use for solving mathematical, scientific, engineering, and
technical problems. It allows you to manipulate and visualize data with a wide range of Python
commands. SciPy stats is a module designed specifically for statistics.

(Note: statsmodels used to be part of the stats module of SciPy, but was later released as its own
package. It is an essential statistical library in Python, but it is not used in this particular lab.)

https://www.coursera.org/learn/the-power-of-statistics/lecture/loR42/work-with-probability-distributions-in-python
https://www.coursera.org/learn/the-power-of-statistics/lecture/loR42/work-with-probability-distributions-in-python

[1]:

[2]:

[3]:

[3]:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
from scipy import stats

education_districtwise = pd.read_csv('education_districtwise.csv')
education_districtwise education_districtwise.dropna()

NOTE: You can use dropna() to remove missing values in your data.

1.3.1 Plot a histogram

The first step in trying to model your data with a probability distribution is to plot a histogram.
This will help you visualize the shape of your data and determine if it resembles the shape of a
specific distribution.

Let’s use matplotlib’s histogram function to plot a histogram of the district literacy rate data.
Recall that the OVERALL_LI column contains this data.

education_districtwise['OVERALL _LI'] .hist()

<matplotlib.axes._subplots.AxesSubplot at Ox7f5f7f£3e4590>

160 1

140 1

120 4

100 1

[4] :

[4]:

[5]:

[5]:

1.3.2 Normal distribution

The histogram shows that the distribution of the literacy rate data is bell-shaped and symmetric
about the mean. The mean literacy rate, which is around 73%, is located in the center of the plot.
Recall that the normal distribution is a continuous probability distribution that is bell-shaped
and symmetrical on both sides of the mean. The shape of the histogram suggests that the normal
distribution might be a good modeling option for the data.

1.3.3 Empirical rule

Since the normal distribution seems like a good fit for the district literacy rate data, we can expect
the empirical rule to apply relatively well. Recall that the empirical rule says that for a normal
distribution:

o 68% of the values fall within +/- 1 SD from the mean
e 95% of the values fall within +/- 2 SD from the mean
e 99.7% of the values fall within +/- 3 SD from the mean

NOTE: “SD” stands for standard deviation.
In other words, we can expect that about:

o 68% of district literacy rates will fall within +/- 1 SD from the mean.
o 95% of district literacy rates will fall within +/- 2 SD from the mean.
e 99.7% of district literacy rates will fall within 4/- 3 SD from the mean.

First, we will name two new variables to store the values for the mean and standard deviation of
the district literacy rate: mean_overall_li and std_overall_1i.

mean_overall 1i = education_districtwise['OVERALL LI'].mean()
mean_overall 13

73.39518927444797

The mean district literacy rate is about 73.4%.
std_overall_1i = education_districtwise['OVERALL LI'].std()
std_overall 1i

10.098460413782469

The standard deviation is about 10%.

Now, let’s compute the actual percentage of district literacy rates that fall within +/- 1 SD from
the mean.

To do this, we will first name two new variables: lower_limit and upper_limit. The lower limit
will be one SD below the mean, or the mean - (1 * SD). The upper limit will be one SD above the
mean, or the mean + (1 * SD). To write the code for the calculations, we will use our two previous
variables, mean_overall_1i and std_overall_li, for the mean and standard deviation.

[6]:

[6]:

[7]:

[7]:

[8]:

[8]:

Then, we will add a new line of code that tells the computer to decide if each value in the OVERALL_LI
column is between the lower limit and upper limit. To do this, we will use the relational operators
greater than or equal to (>=) and less than or equal to (<=), and the bitwise operator AND (&).
Finally, we will use mean () to divide the number of values that are within 1 SD of the mean by the
total number of values.

lower_limit = mean_overall 1i - 1 * std_overall 1li
upper_limit mean_overall 1i + 1 * std_overall 1i
((education_districtwise['OVERALL LI'] >= lower_ limit) &,

— (education_districtwise['OVERALL_LI'] <= upper_limit)) .mean()

0.6640378548895899

Next, let’s use the same code structure to compute the actual percentage of district literacy rates
that fall within 4/- 2 SD from the mean.

lower_limit = mean_overall_1i - 2 * std_overall 1i
upper_limit mean_overall 1i + 2 * std_overall_1li
((education_districtwise['OVERALL LI'] >= lower_limit) &,

— (education_districtwise['OVERALL_LI'] <= upper_limit)) .mean()

0.9542586750788643

Finally, we will use the same code structure to compute the actual percentage of district literacy
rates that fall within 4+/- 3 SD from the mean.

lower_limit = mean_overall_1i - 3 * std_overall 1i
upper_limit = mean_overall_li + 3 * std_overall_li
((education_districtwise['OVERALL_LI'] >= lower_limit) &,

— (education_districtwise['OVERALL_LI'] <= upper_limit)).mean()

0.9968454258675079

Our values agree quite well with the empirical rule!

Our values of 66.4%, 95.4%, and 99.6% are very close to the values the empirical rule suggests:
roughly 68%, 95%, and 99.7%.

Knowing that your data is normally distributed is useful for analysis because many statistical tests
and machine learning models assume a normal distribution. Plus, when your data follows a normal
distribution, you can use z-scores to measure the relative position of your values and find outliers
in your data.

1.3.4 Compute z-scores to find outliers

Recall that a z-score is a measure of how many standard deviations below or above the population
mean a data point is. A z-score is useful because it tells you where a value lies in a distribution.

Data professionals often use z-scores for outlier detection. Typically, they consider observations
with a z-score smaller than -3 or larger than +3 as outliers. In other words, these are values that
lie more than +/- 3 SDs from the mean.

To find outliers in the data, we will first create a new column called Z_SCORE that includes the
z-scores for each district literacy rate in your dataset. Recall that the OVERALL_LTI column lists all
the district literacy rates.

Then, we will compute the z-scores using the function scipy.stats.zscore().
Reference: scipy.stats.zscore

[9]: education_districtwise['Z SCORE'] = stats.
—zscore(education _districtwise['OVERALL LI'])
education_districtwise

[9]: DISTNAME STATNAME BLOCKS VILLAGES CLUSTERS TOTPOPULAT OVERALL LI \
0 DISTRICT32 STATEL 13 391 104 875564.0 66.92
1 DISTRICT649 STATE1 18 678 144 1015503.0 66.93
2 DISTRICT229 STATEL 8 94 65 1269751.0 71.21
3 DISTRICT259 STATE1 13 523 104 735753.0 57.98
4 DISTRICT486 STATEL 8 359 64 570060.0 65.00
675 DISTRICT522 STATE29 37 876 137 5296396.0 78.05
676 DISTRICT498 STATE29 64 1458 230 4042191.0 56.06
677 DISTRICT343 STATE29 59 1117 216 3483648.0 65.05
678 DISTRICT130 STATE29 51 993 211 3522644.0 66.16
679 DISTRICT341 STATE29 41 783 185 2798214.0 65.46

Z_SCORE
0 -0.641712
1 -0.640721
2 -0.216559
3 -1.527694
4 -0.831990

675 0.461307
676 -1.717972
677 -0.827035
678 -0.717030
679 -0.786403

[634 rows x 8 columns]
Now that we have computed z-scores for our dataset,we will write some code to identify outliers,

or districts with z-scores that are more than +/- 3 SDs from the mean. Let’s use the relational
operators greater than (>) and less than (<), and the bitwise operator OR ().

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html

[10]:

[10]:

education_districtwise[(education_districtwise['Z_SCORE'] > 3) |,
< (education_districtwise['Z_SCORE'] < -3)]

DISTNAME STATNAME BLOCKS VILLAGES CLUSTERS TOTPOPULAT OVERALL_LI \

434 DISTRICT461 STATE31 4 360 53 532791.0 42.67
494 DISTRICT429 STATE22 6 612 62 728677.0 37.22
Z_SCORE

434 -3.044964
494 -3.585076

Using z-scores, we can identify two outlying districts that have unusually low literacy rates:
DISTRICT461 and DISTRICT429. The literacy rates in these two districts are more than 3 SDs
below the overall mean literacy rate.

Our analysis gives us important information to share. The government may want to provide more
funding and resources to these two districts in the hopes of significantly improving literacy.

1.4 Conclusion

Congratulations! You've completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

You now understand how to use Python to model your data with the normal distribution and
compute z-scores to find outliers in your data. Going forward, you can start using probability
distributions to model your own datasets.

	Annotated follow-along guide: Work with probability distributions in Python
	Introduction
	Overview
	Import packages and libraries
	Plot a histogram
	Normal distribution
	Empirical rule
	Compute z-scores to find outliers

	Conclusion

