[17:

[2]:

Annotated follow-along guide Sampling with Python
March 31, 2024

1 Sampling with Python

Throughout the following exercises, you will learn to use Python to simulate random sampling and
make a point estimate of a population mean based on your sample data. Before starting on this
programming exercise, we strongly recommend watching the video lecture and completing the IVQ
for the associated topics.

All the information you need for solving this assignment is in this notebook, and all the code you
will be implementing will take place within this notebook.

As we move forward, you can find instructions on how to install required libraries as they arise in
this notebook. Before we begin with the exercises and analyzing the data, we need to import all
libraries and extensions required for this programming exercise. Throughout the course, we will be
using numpy, pandas, scipy stats, and statsmodels for operations, and matplotlib for plotting.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
from scipy import stats

import statsmodels.api as sm

education_districtwise = pd.read_csv('education_districtwise.csv')
education_districtwise = education_districtwise.dropna()

We’ll continue with our previous scenario, in which you’re a data professional working for the
Department of Education of a large nation. Recall that you're analyzing data on the literacy rate
for each district.

Now imagine that you are asked to collect the data on district literacy rates, and that you have
limited time to do so. You can only survey 50 randomly chosen districts, instead of the 634 districts
included in your original dataset. The goal of your research study is to estimate the mean literacy
rate for all 634 districts based on your sample of 50 districts.

1.1 Simulate random sampling

You can use Python to simulate taking a random sample of 50 districts from your dataset. To
do this, usepandas.DataFrame.sample (). The following arguments in the sample () function will
help you simulate random sampling:

o n: Refers to the desired sample size
e replace: Indicates whether you are sampling with or without replacement
e random_state: Refers to the seed of the random number

Reference: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html.

Note: A random seed is a starting point for generating random numbers. You can use any
arbitrary number to fix the random seed, and give the random number generator a starting point.
Also, going forward, you can use the same random seed to generate the same set of numbers.

Now you're ready to write your code. First, name a new variable sampled_data. Then, set the
arguments for the sample () function:

e n: You're sampling from 50 districts, so your sample size is 50.

e replace: For the purpose of our example, you’ll sample with replacement. True indicates
sampling with replacement.

e random_state: Choose an arbitrary number for your random seed. Say, 31208.

[3]: sampled_data = education_districtwise.sample(n=50, replace=True,,
—,random_state=31208)
sampled_data

[3]: DISTNAME STATNAME BLOCKS VILLAGES CLUSTERS TOTPOPULAT OVERALL_LT
661 DISTRICT528 STATE6 9 112 89 1863174.0 92.14
216 DISTRICT291 STATE28 14 1188 165 3273127.0 52.49
367 DISTRICT66 STATE23 12 1169 116 1042304.0 62.14
254 DISTRICT458 STATE3 3 157 19 82839.0 76.33
286 DISTRICT636 STATE35 3 187 44 514683.0 86.70
369 DISTRICT512 STATE23 6 589 30 717169.0 68.35
258 DISTRICT156 STATE3 6 80 9 35289.0 59.94
10 DISTRICT412 STATE1 11 187 95 476820.0 68.69
512 DISTRICT277 STATES 10 558 179 2298934.0 84.31
144 DISTRICT133 STATE21 14 1672 136 3673849.0 69.61
325 DISTRICT1 STATE33 4 534 98 957853.0 69.37
227 DISTRICT159 STATE28 18 870 134 2954367.0 66.23
86 DISTRICTE667 STATE25 5 396 75 896129.0 82.23
425 DISTRICT144 STATE31 7 1064 108 2662077.0 71.59
260 DISTRICT305 STATE3 2 62 6 145538.0 69.88
281 DISTRICT385 STATE35 6 531 30 354972.0 75.00
262 DISTRICT552 STATE3 3 103 4 111997.0 52.23
253 DISTRICT168 STATE3 5 312 16 176385.0 82.14
301 DISTRICT551 STATE14 9 103 63 693281.0 88.29
356 DISTRICT494 STATE34 25 2179 223 3596292.0 70.95
165 DISTRICT196 STATE21 10 1354 119 1795092.0 77.52
565 DISTRICT308 STATE17 8 721 144 848868.0 86.54
388 DISTRICT281 STATE23 6 392 58 949159.0 73.92
461 DISTRICT619 STATE22 5 859 57 1064989.0 68.36
384 DISTRICT455 STATE23 9 1217 55 1063458.0 68.85
590 DISTRICT70 STATE20 7 427 84 1846993.0 80.30

[4]:

[4]:

343 DISTRICT354 STATE33 2 192 46 1260419.0 88.66
539 DISTRICT440 STATE17 15 1465 167 2887826.0 88.23
459 DISTRICT431 STATE22 9 1778 143 2363744.0 73.42
667 DISTRICT123 STATE11 3 80 16 237586.0 88.49
387 DISTRICT231 STATE23 6 657 63 530299.0 64.51
306 DISTRICT37 STATE4 7 1083 92 642923.0 68.38
213 DISTRICT347 STATE28 11 623 94 2228397.0 59.65
97 DISTRICT22 STATE2 7 182 7 2531583.0 87.12
78 DISTRICT247 STATE25 7 314 60 1332042.0 72.73
394 DISTRICT640 STATE24 17 1857 191 1802777.0 69.00
184 DISTRICT596 STATE21 11 1281 108 2149066.0 51.76
147 DISTRICT335 STATE21 17 1945 138 4380793.0 69.44
542 DISTRICT489 STATE1l7 7 749 63 1198810.0 85.14
105 DISTRICT157 STATE13 14 1994 508 3671999.0 71.68
254 DISTRICT458 STATE3 3 157 19 82839.0 76.33
109 DISTRICT158 STATE13 6 769 211 1338114.0 66.19
609 DISTRICT17 STATE20 4 359 59 9588910.0 88.48
53 DISTRICT126 STATE26 3 197 21 596294.0 68.90
81 DISTRICT45 STATE25 9 351 130 1742815.0 73.24
516 DISTRICT300 STATES 5 651 84 590379.0 73.29
641 DISTRICT484 STATE6 15 333 83 1721179.0 74.92
650 DISTRICT145 STATE6 11 489 100 1614069.0 84.09
70 DISTRICT99 STATE25 4 279 43 558890.0 83.44
163 DISTRICT366 STATE21 9 1330 86 1579160.0 79.99

The output shows 50 districts selected randomly from your dataset. Each has a different liter-
acy rate, but note that row 254 was sampled twice, which is possible because you sampled with
replacement.

1.1.1 Compute the sample mean

Now that you have your random sample, use the mean function to compute the sample mean. First,
name a new variable estimatel. Next, use mean() to compute the mean for your sample data.
estimatel = sampled_datal['OVERALL_LI'] .mean()

estimatel

74.22359999999999

The sample mean for district literacy rate is about 74.22%. This is a point estimate of the population
mean based on your random sample of 50 districts. Remember that the population mean is the
literacy rate for all districts. Due to sampling variability, the sample mean is usually not exactly
the same as the population mean.

Next, let’s find out what will happen if you compute the sample mean based on another random
sample of 50 districts.

To generate another random sample, name a new variable estimate2. Then, set the arguments

[5]:

[5]:

for the sample function. Once again, n is 50 and replace is “True.” This time, choose a different
number for your random seed to generate a different sample: 56,810. Finally, add mean() at the
end of your line of code to compute the sample mean.

estimate2 = education_districtwise['OVERALL_LI'].sample(n=50, replace=True,,
—random_state=56810) .mean ()
estimate2

74.24780000000001

For your second estimate, the sample mean for district literacy rate is about 74.25%.

Due to sampling variability, this sample mean is different from the sample mean of your previous
estimate, 74.22% — but they’re really close.

1.2 The central limit theorem

Recall that the central limit theorem tells you that when the sample size is large enough, the
sample mean approaches a normal distribution. And, as you sample more observations from a
population, the sample mean gets closer to the population mean. The larger your sample size, the
more accurate your estimate of the population mean is likely to be.

In this case, the population mean is the overall literacy rate for all districts in the nation. Earlier,
you found that the population mean literacy rate is 73.39%. Based on sampling, your first estimated
sample mean was 74.22%, and your second estimate was 74.24%. Each estimate is relatively close
to the population mean.

1.2.1 Compute the mean of a sampling distribution with 10,000 samples

Now, imagine you repeat the study 10,000 times and obtain 10,000 point estimates of the mean.
In other words, you take 10,000 random samples of 50 districts, and compute the mean for each
sample. According to the central limit theorem, the mean of your sampling distribution will be
roughly equal to the population mean.

You can use Python to compute the mean of the sampling distribution with 10,000 samples.
Let’s go over the code step by step:

1. Create an empty list to store the sample mean from each sample. Name this estimate_list.

2. Set up a for-loop with the range () function. The range () function generates a sequence of
numbers from 1 to 10,000. The loop will run 10,000 times, and iterate over each number in
the sequence.

3. Specify what you want to do in each iteration of the loop. The sample() function tells the
computer to take a random sample of 50 districts with replacement—the argument n equals
50, and the argument replace equals True. The append () function adds a single item to an
existing list. In this case, it appends the value of the sample mean to each item in the list.
Your code generates a list of 10,000 values, each of which is the sample mean from a random
sample.

[6]:

[7]1:

[7]:

[8]:

[8]:

[9]:

4. Create a new data frame for your list of 10,000 estimates. Name a new variable estimate_df
to store your data frame.

estimate_list = []

for i in range(10000):
estimate_list.append(education_districtwise['OVERALL_LI'] .sample(n=50,

—replace=True) .mean())

estimate_df = pd.DataFrame(data={'estimate': estimate_list})

Note that, because you didn’t specify a random seed for each loop iteration, by default the rows
sampled will be different each time.

Now, name a new variable mean_sample_means and compute the mean for your sampling distribu-
tion of 10,000 random samples.

mean_sample_means = estimate_df['estimate'].mean()
mean_sample_means

73.37863700000047

The mean of your sampling distribution is about 73.4%.

Compare this with the population mean of your complete dataset:

population_mean = education_districtwise['OVERALL_LI'].mean()
population_mean

73.39518927444797

The mean of your sampling distribution is essentially identical to the population mean, which is
also about 73.4%!

1.2.2 Visualize your data

To visualize the relationship between your sampling distribution of 10,000 estimates and the normal
distribution, we can plot both at the same time.

Note: The code for this plot is beyond the scope of this course.

plt.hist(estimate_df['estimate'], bins=25, density=True, alpha=0.4, label =
—"histogram of sample means of 10000 random samples")

xmin, xmax = plt.xlim()

X = np.linspace(xmin, xmax, 100) # generate a grid of 100 wvalues from zmin to,
—TMaz.

p = stats.norm.pdf(x, mean_sample_means, stats.tstd(estimate_df['estimate']))

plt.plot(x, p,'k', linewidth=2, label = 'normal curve from central limit
—theorem')

plt.axvline(x=population_mean, color='g', linestyle = 'solid', label =,
< 'population mean')

plt.axvline(x=estimatel, color='r', linestyle = '--', label = 'sample mean of,
—the first random sample')

plt.axvline(x=mean_sample_means, color='b', linestyle = ':', label = 'mean of,
—sample means of 10000 random samples')

plt.title("Sampling distribution of sample mean")

plt.xlabel('sample mean')

plt.ylabel('density"')

plt.legend(bbox_to_anchor=(1.04,1))

plt.show()
Sampling distribution of sample mean
| — normal curve from central limit theorem
0325 —— population mean
=== sample mean of the first random sample
----- mean of sample means of 10000 random samples
020 histogram of sample means of 10000 random samples
',—j": 015
=
kS
010
005
000

(2] 70 72 74 Ta 78 80
sample mean

There are three key takeaways from this graph:

1. As the central limit theorem predicts, the histogram of the sampling distribution is well
approximated by the normal distribution. The outline of the histogram closely follows the
normal curve.

2. The mean of the sampling distribution, the blue dotted line, overlaps with the population
mean, the green solid line. This shows that the two means are essentially equal to each other.

3. The sample mean of your first estimate of 50 districts, the red dashed line, is farther away
from the center. This is due to sampling variability.

The central limit theorem shows that as you increase the sample size, your estimate becomes more
accurate. For a large enough sample, the sample mean closely follows a normal distribution.

Your first sample of 50 districts estimated the mean district literacy rate as 74.22%, which is
relatively close to the population mean of 73.4%.

To ensure your estimate will be useful to the government, you can compare the nation’s literacy
rate to other benchmarks, such as the global literacy rate, or the literacy rate of peer nations. If
the nation’s literacy rate is below these benchmarks, this may help convince the government to
devote more resources to improving literacy across the country.

Congratulations! You've completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

You now understand how to use Python to simulate random sampling and make a point estimate
of a population mean. Going forward, you can start using Python to work with your own sample
data.

	Sampling with Python
	Simulate random sampling
	Compute the sample mean

	The central limit theorem
	Compute the mean of a sampling distribution with 10,000 samples
	Visualize your data

