Measures of position: Percentiles and quartiles

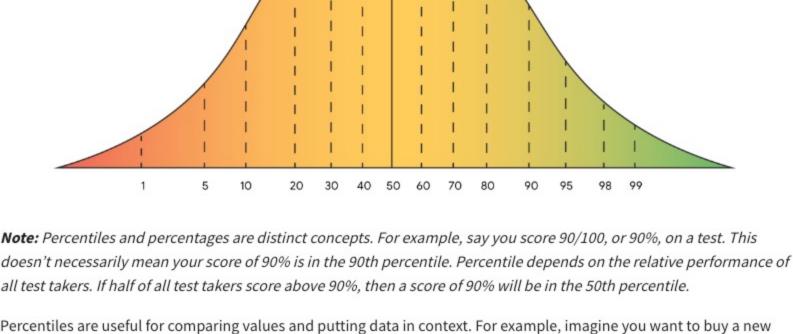
one value is higher or lower than another, or whether a value falls in the lower, middle, or upper portion of your dataset. In this reading, you'll learn more about the most common measures of position: percentiles and quartiles. You'll also learn how to calculate the interquartile range, and use the five number summary to summarize your data.

Recently, you learned that measures of position let you determine the position of a value in relation to other values in a dataset. Along with center and spread, it's helpful to know the relative position of your values. For example, whether

Measures of position Percentile

A percentile is the value below which a percentage of data falls. Percentiles divide your data into 100 equal parts.

Percentiles give the relative position or rank of a particular value in a dataset.


scores.

Quartile

percentile. This means the score is higher than 99% of all test scores. If a score falls in the 75th percentile, the score is higher than 75% of all test scores. If a score falls in the 50th percentile, the score is higher than half, or 50%, of all test

For example, percentiles are commonly used to rank test scores on school exams. Let's say a test score falls in the 99th

Test Score Percentiles

it's hard to know. However, if you know that 23 mpg is in the 25th percentile of all midsize sedans, you have a much clearer idea of its relative performance. In this case, 75% of all midsize sedans have a higher mpg than the car you're thinking about buying.

car. You'd like a midsize sedan with great fuel economy. In the United States fuel economy is measured in miles per gallon of fuel, or mpg. The sedan you're considering gets 23 mpg. Is that good or bad? Without a basis for comparison,

dataset into four equal parts. Three quartiles divide the data into four quarters. Quartiles let you compare values relative to the four quarters of data. Each quarter includes 25% of the values in your dataset. The first quartile, Q1, is the middle value in the first half of the dataset. Q1 refers to the 25th percentile. 25% of the values in the entire dataset are below Q1, and 75% are above it.

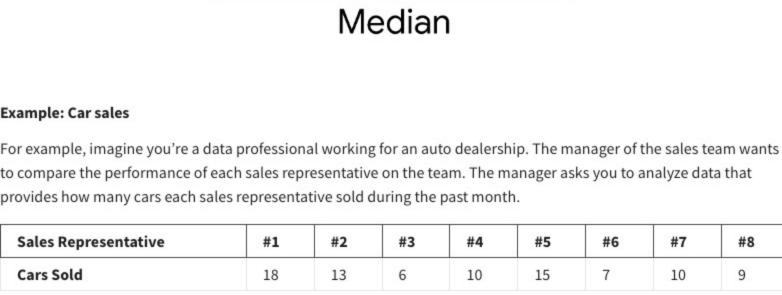
The second quartile, Q2, is the median of the dataset. Q2 refers to the 50th percentile. 50% of the values in the

The third quartile, Q3, is the middle value in the second half of the dataset. Q3 refers to the 75th percentile. 75%

entire dataset are below Q2, and 50% are above it.

25%

of the values in the entire dataset are below Q3, and 25% are above it.


25%

You can use quartiles to get a general understanding of the relative position of values. A quartile divides the values in a

- Q2 Q3 Q1

25%

25%

[6, 7, 9, 10, 10, 13, 15, 18] Find the median, or middle value, of your entire dataset. This is Q2. There are an even number of values in the

values, 7 and 9.

You can calculate quartiles for your data in four steps:

Arrange the values in your dataset from smallest to largest.

dataset, so the median is the average of the two middle values, 10 and 10.

interval Q1 - (1.5 * IQR) and Q3 + (1.5 * IQR) are often considered outliers.

 $\mathbf{Q2} = (10 + 10) \div 2 = 20 \div 2 = 10$ 3. Find the median of the lower half of your dataset [6, 7, 9, 10]. This is Q1. The median is the average of the two middle

4. Finally, find the median of the upper half of your dataset [10, 13, 15, 18]. This is Q3. The median is the average of the

Interquartile range (IQR)

cars.

 $Q1 = (7 + 9) \div 2 = 16 \div 2 = 8$

two middle values, 13 and 15.

 $Q3 = (13 + 15) \div 2 = 28 \div 2 = 14$

The middle 50% of your data is called the **interquartile range**, or **IQR**. The interquartile range is the distance between the first quartile (Q1) and the third quartile (Q3). This is the same as the distance between the 25th and 75th percentiles. IQR is useful for determining the relative position of your data values. For instance, data values outside the

Note: Technically, IQR is a measure of dispersion because it measures the spread of the middle half or middle 50% of your data (between Q1 and Q3). IQR is less sensitive to outliers than the range because it doesn't include the more

Finally, you can summarize the major divisions in your dataset with the five number summary. The five numbers

The five number summary is useful because it gives you an overall idea of the distribution of your data, from the

The box part of the box plot goes from Q1 to Q3. The vertical line in the middle of the box is the median (Q2). The

The following box plot illustrates the data on car sales. You can find the values on the box plot and determine the

horizontal lines on each side of the box, known as whiskers, go from Q1 to the minimum, and from Q3 to the

interquartile range (IQR). The IQR is the length of the box, or the distance from Q1 to Q3.

Five number summary

include:

maximum.

IQR = 14 - 8 = 6

extreme values in your dataset.

IQR = Q3 - Q1. In this case, Q3 = 14 and Q1 = 8.

The maximum

The minimum

The first quartile (Q1)

The third quartile (Q3)

The median, or second quartile (Q2)

extreme values to the center. You can visualize it with a box plot.

- Lowest Lower Median Upper Highest Value Quartile Q2 = 10Value Quartile Q1 = 8Q3 = 1418

Interquartile Range Key takeaways Data professionals use measures of position such as percentiles and quartiles to better understand all types of data, from product sales to household income. Measures of position help you quickly identify the relative location of your data values, and give you a more precise sense of the distribution of your data. Resources for more information

To learn more about measures of position like percentiles and quartiles, check out the following resource:

This <u>statistics dictionary from Freie Universität Berlin</u> of provides clear definitions and useful examples of measures of position such as percentiles, quartiles, the five number summary, and more.

Report an issue

Mark as completed

🖒 Like Dislike