
Exemplar_Course 3 Waze project lab

February 11, 2024

1 Waze Project

Course 3 - Go Beyond the Numbers: Translate Data into Insights

Your team is still in the early stages of their user churn project. So far, you’ve completed a project
proposal and used Python to inspect and organize Waze’s user data.

You check your inbox and notice a new message from Chidi Ga, your team’s Senior Data Analyst.
Chidi is pleased with the work you have already completed and requests your assistance with
exploratory data analysis (EDA) and further data visualization. Harriet Hadzic, Waze’s Director
of Data Analysis, will want to review a Python notebook that shows your data exploration and
visualization.

A notebook was structured and prepared to help you in this project. Please complete the following
questions and prepare an executive summary.

2 Course 3 End-of-course project: Exploratory data analysis

In this activity, you will examine data provided and prepare it for analysis.

The purpose of this project is to conduct exploratory data analysis (EDA) on a provided dataset.

The goal is to continue the examination of the data that you began in the previous Course, adding
relevant visualizations that help communicate the story that the data tells.

This activity has 4 parts:

Part 1: Imports, links, and loading

Part 2: Data Exploration * Data cleaning

Part 3: Building visualizations

Part 4: Evaluating and sharing results

Follow the instructions and answer the question below to complete the activity. Then, you will
complete an executive summary using the questions listed on the PACE Strategy Document .

Be sure to complete this activity before moving on. The next course item will provide you with a
completed exemplar to compare to your own work.

1

https://docs.google.com/document/d/1iSHdbfQR6w8RClJNWai8oJXn9tQmYoTKn6QohuaK4-s/template/preview?resourcekey=0-ZIHnbxL1dd2u9A47iEVXvg

3 Visualize a story in Python

4 PACE stages

Throughout these project notebooks, you’ll see references to the problem-solving framework PACE.
The following notebook components are labeled with the respective PACE stage: Plan, Analyze,
Construct, and Execute.

4.1 PACE: Plan

Consider the questions in your PACE Strategy Document to reflect on the Plan stage.

4.1.1 Task 1. Imports and data loading

For EDA of the data, import the data and packages that will be most helpful, such as pandas,
numpy, and matplotlib.

[1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

Read in the data and store it as a dataframe object called df.

[2]: # Load the dataset into a dataframe
df = pd.read_csv('waze_dataset.csv')

4.2 PACE: Analyze

Consider the questions in your PACE Strategy Document and those below where applicable to
complete your code: 1. Does the data need to be restructured or converted into usable formats?

2. Are there any variables that have missing data?

Answers:

1. The data is already in a structured format. Each row represents a user.

2. Yes, 700 rows have label missing. Other variables have no missing values.

4.2.1 Task 2. Data exploration and cleaning

Consider the following questions:

1. Given the scenario, which data columns are most applicable?

2. Which data columns can you eliminate, knowing they won’t solve your problem scenario?

2

3. How would you check for missing data? And how would you handle missing data (if any)?

4. How would you check for outliers? And how would handle outliers (if any)?

Answers:

1. SInce we are interested in user churn, the label column is essential. Besides label, variables
that tie to user behaviors will be the most applicable. All variables tie to user behavior except
ID.

2. ID can be dropped from the analysis since we are not interested in identifying a particular
user. ID does not provide meaningful information about the churn (unless ID is assigned
based on user sign-up time).

3. To check for missing data, we can use df.info() and inspect the Non-Null Count column.
The difference between the number of non-nulls and the number of rows in the data is the
number of missing values for the variable.

If the missing data are missing completely at random (MCAR), meaning that the reason for
missingness is independent of the data values themselves, we can proceed with a complete-
case analysis by removing the rows with missing values. Otherwise, we need to investigate the
root cause of the missingness and make sure it won’t interfere with the statistical inference
and modeling.

4. See the previous exemplar responses for the outlier question.

Data overview and summary statistics Use the following methods and attributes on the
dataframe:

• head()
• size
• describe()
• info()

It’s always helpful to have this information at the beginning of a project, where you can always
refer back to if needed.

[3]: df.head(10)

[3]: ID label sessions drives total_sessions n_days_after_onboarding \
0 0 retained 283 226 296.748273 2276
1 1 retained 133 107 326.896596 1225
2 2 retained 114 95 135.522926 2651
3 3 retained 49 40 67.589221 15
4 4 retained 84 68 168.247020 1562
5 5 retained 113 103 279.544437 2637
6 6 retained 3 2 236.725314 360
7 7 retained 39 35 176.072845 2999
8 8 retained 57 46 183.532018 424
9 9 churned 84 68 244.802115 2997

total_navigations_fav1 total_navigations_fav2 driven_km_drives \

3

0 208 0 2628.845068
1 19 64 13715.920550
2 0 0 3059.148818
3 322 7 913.591123
4 166 5 3950.202008
5 0 0 901.238699
6 185 18 5249.172828
7 0 0 7892.052468
8 0 26 2651.709764
9 72 0 6043.460295

duration_minutes_drives activity_days driving_days device
0 1985.775061 28 19 Android
1 3160.472914 13 11 iPhone
2 1610.735904 14 8 Android
3 587.196542 7 3 iPhone
4 1219.555924 27 18 Android
5 439.101397 15 11 iPhone
6 726.577205 28 23 iPhone
7 2466.981741 22 20 iPhone
8 1594.342984 25 20 Android
9 2341.838528 7 3 iPhone

[4]: df.size

[4]: 194987

Generate summary statistics using the describe() method.

[5]: df.describe()

[5]: ID sessions drives total_sessions \
count 14999.000000 14999.000000 14999.000000 14999.000000
mean 7499.000000 80.633776 67.281152 189.964447
std 4329.982679 80.699065 65.913872 136.405128
min 0.000000 0.000000 0.000000 0.220211
25% 3749.500000 23.000000 20.000000 90.661156
50% 7499.000000 56.000000 48.000000 159.568115
75% 11248.500000 112.000000 93.000000 254.192341
max 14998.000000 743.000000 596.000000 1216.154633

n_days_after_onboarding total_navigations_fav1 \
count 14999.000000 14999.000000
mean 1749.837789 121.605974
std 1008.513876 148.121544
min 4.000000 0.000000
25% 878.000000 9.000000

4

50% 1741.000000 71.000000
75% 2623.500000 178.000000
max 3500.000000 1236.000000

total_navigations_fav2 driven_km_drives duration_minutes_drives \
count 14999.000000 14999.000000 14999.000000
mean 29.672512 4039.340921 1860.976012
std 45.394651 2502.149334 1446.702288
min 0.000000 60.441250 18.282082
25% 0.000000 2212.600607 835.996260
50% 9.000000 3493.858085 1478.249859
75% 43.000000 5289.861262 2464.362632
max 415.000000 21183.401890 15851.727160

activity_days driving_days
count 14999.000000 14999.000000
mean 15.537102 12.179879
std 9.004655 7.824036
min 0.000000 0.000000
25% 8.000000 5.000000
50% 16.000000 12.000000
75% 23.000000 19.000000
max 31.000000 30.000000

And summary information using the info() method.

[6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 13 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 ID 14999 non-null int64
1 label 14299 non-null object
2 sessions 14999 non-null int64
3 drives 14999 non-null int64
4 total_sessions 14999 non-null float64
5 n_days_after_onboarding 14999 non-null int64
6 total_navigations_fav1 14999 non-null int64
7 total_navigations_fav2 14999 non-null int64
8 driven_km_drives 14999 non-null float64
9 duration_minutes_drives 14999 non-null float64
10 activity_days 14999 non-null int64
11 driving_days 14999 non-null int64
12 device 14999 non-null object
dtypes: float64(3), int64(8), object(2)
memory usage: 1.5+ MB

5

4.3 PACE: Construct

Consider the questions in your PACE Strategy Document to reflect on the Construct stage.

Consider the following questions as you prepare to deal with outliers:

1. What are some ways to identify outliers?

• Use numpy functions to investigate the mean() and median() of the data and understand
range of data values

• Use a boxplot to visualize the distribution of the data

2. How do you make the decision to keep or exclude outliers from any future models?

• There are three main options for dealing with outliers: keeping them as they are, deleting
them, or reassigning them. Whether you keep outliers as they are, delete them, or reassign
values is a decision that you make on a dataset-by-dataset basis, according to what your goals
are for the model you are planning to construct. To help you make the decision, you can start
with these general guidelines:

– Delete them: If you are sure the outliers are mistakes, typos, or errors and the dataset
will be used for modeling or machine learning, then you are more likely to decide to
delete outliers. Of the three choices, you’ll use this one the least.

– Reassign them: If the dataset is small and/or the data will be used for modeling or
machine learning, you are more likely to choose a path of deriving new values to replace
the outlier values.

– Leave them: For a dataset that you plan to do EDA/analysis on and nothing else, or
for a dataset you are preparing for a model that is resistant to outliers, it is most likely
that you are going to leave them in.

4.3.1 Task 3a. Visualizations

Select data visualization types that will help you understand and explain the data.

Now that you know which data columns you’ll use, it is time to decide which data visualization
makes the most sense for EDA of the Waze dataset.

Question: What type of data visualization(s) will be most helpful?

• Line graph
• Bar chart
• Box plot
• Histogram
• Heat map
• Scatter plot
• A geographic map

Answer:

• Box plots will be helpful to determine outliers and where the bulk of the data points reside
in terms of drives, sessions and all other continuous numeric variables

• Histograms are essential to understand the distribution of variables

6

• Scatter plots will be helpful to visualize relationships between variables

• Bar charts are useful for communicating levels and quantities, especially for categorical information

Begin by examining the spread and distribution of important variables using box plots and his-
tograms.

sessions The number of occurrences of a user opening the app during the month

[7]: # Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=df['sessions'], fliersize=1)
plt.title('sessions box plot');

[8]: # Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=df['sessions'])
median = df['sessions'].median()
plt.axvline(median, color='red', linestyle='--')
plt.text(75,1200, 'median=56.0', color='red')
plt.title('sessions box plot');

7

The sessions variable is a right-skewed distribution with half of the observations having 56 or
fewer sessions. However, as indicated by the boxplot, some users have more than 700.

drives An occurrence of driving at least 1 km during the month

[9]: # Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=df['drives'], fliersize=1)
plt.title('drives box plot');

As you perform EDA, you’ll find that many tasks get repeated, such as plotting histograms of
features. Remember that whenever you find yourself copy/pasting code, it’s worth considering
whether a function would help make your work more efficient. Sometimes it’s not worth it. Other
times, defining a function will help a lot.

The following code block defines a function that helps plot histograms with a particular style/format

8

using this particular dataset. You don’t have to do this, but in this case it’s helpful.

[10]: # Helper function to plot histograms based on the
format of the `sessions` histogram
def histogrammer(column_str, median_text=True, **kwargs): # **kwargs = any␣
↪→keyword arguments

from the sns.
↪→histplot() function

median=round(df[column_str].median(), 1)
plt.figure(figsize=(5,3))
ax = sns.histplot(x=df[column_str], **kwargs) # Plot the␣

↪→histogram
plt.axvline(median, color='red', linestyle='--') # Plot the median␣

↪→line
if median_text==True: # Add median text␣

↪→unless set to False
ax.text(0.25, 0.85, f'median={median}', color='red',

ha='left', va='top', transform=ax.transAxes)
else:

print('Median:', median)
plt.title(f'{column_str} histogram');

[11]: # Histogram
histogrammer('drives')

The drives information follows a distribution similar to the sessions variable. It is right-skewed,
approximately log-normal, with a median of 48. However, some drivers had over 400 drives in the
last month.

9

total_sessions A model estimate of the total number of sessions since a user has onboarded

[12]: # Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=df['total_sessions'], fliersize=1)
plt.title('total_sessions box plot');

[13]: # Histogram
histogrammer('total_sessions')

The total_sessions is a right-skewed distribution. The median total number of sessions is 159.6.
This is interesting information because, if the median number of sessions in the last month was 56
and the median total sessions was ~160, then it seems that a large proportion of a user’s (estimated)
total drives might have taken place in the last month. This is something you can examine more
closely later.

10

n_days_after_onboarding The number of days since a user signed up for the app

[14]: # Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=df['n_days_after_onboarding'], fliersize=1)
plt.title('n_days_after_onboarding box plot');

[15]: # Histogram
histogrammer('n_days_after_onboarding', median_text=False)

Median: 1741.0

The total user tenure (i.e., number of days since onboarding) is a uniform distribution with values
ranging from near-zero to ~3,500 (~9.5 years).

driven_km_drives Total kilometers driven during the month

11

[16]: # Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=df['driven_km_drives'], fliersize=1)
plt.title('driven_km_drives box plot');

[17]: # Histogram
histogrammer('driven_km_drives')

The number of drives driven in the last month per user is a right-skewed distribution with half the
users driving under 3,495 kilometers. As you discovered in the analysis from the previous course,
the users in this dataset drive a lot. The longest distance driven in the month was over half the
circumferene of the earth.

duration_minutes_drives Total duration driven in minutes during the month

12

[18]: # Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=df['duration_minutes_drives'], fliersize=1)
plt.title('duration_minutes_drives box plot');

[19]: # Histogram
histogrammer('duration_minutes_drives')

The duration_minutes_drives variable has a heavily skewed right tail. Half of the users drove
less than ~1,478 minutes (~25 hours), but some users clocked over 250 hours over the month.

activity_days Number of days the user opens the app during the month

[20]: # Box plot
plt.figure(figsize=(5,1))

13

sns.boxplot(x=df['activity_days'], fliersize=1)
plt.title('activity_days box plot');

[21]: # Histogram
histogrammer('activity_days', median_text=False, discrete=True)

Median: 16.0

Within the last month, users opened the app a median of 16 times. The box plot reveals a centered
distribution. The histogram shows a nearly uniform distribution of ~500 people opening the app
on each count of days. However, there are ~250 people who didn’t open the app at all and ~250
people who opened the app every day of the month.

This distribution is noteworthy because it does not mirror the sessions distribution, which you
might think would be closely correlated with activity_days.

14

driving_days Number of days the user drives (at least 1 km) during the month

[22]: # Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=df['driving_days'], fliersize=1)
plt.title('driving_days box plot');

[23]: # Histogram
histogrammer('driving_days', median_text=False, discrete=True)

Median: 12.0

The number of days users drove each month is almost uniform, and it largely correlates with the
number of days they opened the app that month, except the driving_days distribution tails off
on the right.

However, there were almost twice as many users (~1,000 vs. ~550) who did not drive at all during

15

the month. This might seem counterintuitive when considered together with the information from
activity_days. That variable had ~500 users opening the app on each of most of the day counts,
but there were only ~250 users who did not open the app at all during the month and ~250 users
who opened the app every day. Flag this for further investigation later.

device The type of device a user starts a session with

This is a categorical variable, so you do not plot a box plot for it. A good plot for a binary
categorical variable is a pie chart.

[24]: # Pie chart
fig = plt.figure(figsize=(3,3))
data=df['device'].value_counts()
plt.pie(data,

labels=[f'{data.index[0]}: {data.values[0]}',
f'{data.index[1]}: {data.values[1]}'],

autopct='%1.1f%%'
)

plt.title('Users by device');

There are nearly twice as many iPhone users as Android users represented in this data.

label Binary target variable (“retained” vs “churned”) for if a user has churned anytime during
the course of the month

This is also a categorical variable, and as such would not be plotted as a box plot. Plot a pie chart
instead.

[25]: # Pie chart
fig = plt.figure(figsize=(3,3))

16

data=df['label'].value_counts()
plt.pie(data,

labels=[f'{data.index[0]}: {data.values[0]}',
f'{data.index[1]}: {data.values[1]}'],

autopct='%1.1f%%'
)

plt.title('Count of retained vs. churned');

Less than 18% of the users churned.

driving_days vs. activity_days Because both driving_days and activity_days represent
counts of days over a month and they’re also closely related, you can plot them together on a single
histogram. This will help to better understand how they relate to each other without having to
scroll back and forth comparing histograms in two different places.

Plot a histogram that, for each day, has a bar representing the counts of driving_days and
user_days.

[26]: # Histogram
plt.figure(figsize=(12,4))
label=['driving days', 'activity days']
plt.hist([df['driving_days'], df['activity_days']],

bins=range(0,33),
label=label)

plt.xlabel('days')
plt.ylabel('count')
plt.legend()
plt.title('driving_days vs. activity_days');

17

As observed previously, this might seem counterintuitive. After all, why are there fewer people
who didn’t use the app at all during the month and more people who didn’t drive at all during the
month?

On the other hand, it could just be illustrative of the fact that, while these variables are related
to each other, they’re not the same. People probably just open the app more than they use the
app to drive—perhaps to check drive times or route information, to update settings, or even just
by mistake.

Nonetheless, it might be worthwile to contact the data team at Waze to get more information about
this, especially because it seems that the number of days in the month is not the same between
variables.

Confirm the maximum number of days for each variable—driving_days and activity_days.

[27]: print(df['driving_days'].max())
print(df['activity_days'].max())

30
31

It’s true. Although it’s possible that not a single user drove all 31 days of the month, it’s highly
unlikely, considering there are 15,000 people represented in the dataset.

One other way to check the validity of these variables is to plot a simple scatter plot with the x-axis
representing one variable and the y-axis representing the other.

[28]: # Scatter plot
sns.scatterplot(data=df, x='driving_days', y='activity_days')
plt.title('driving_days vs. activity_days')
plt.plot([0,31], [0,31], color='red', linestyle='--');

18

Notice that there is a theoretical limit. If you use the app to drive, then by definition it must count
as a day-use as well. In other words, you cannot have more drive-days than activity-days. None of
the samples in this data violate this rule, which is good.

Retention by device Plot a histogram that has four bars—one for each device-label
combination—to show how many iPhone users were retained/churned and how many Android
users were retained/churned.

[29]: # Histogram
plt.figure(figsize=(5,4))
sns.histplot(data=df,

x='device',
hue='label',
multiple='dodge',
shrink=0.9
)

plt.title('Retention by device histogram');

19

The proportion of churned users to retained users is consistent between device types.

Retention by kilometers driven per driving day In the previous course, you discovered that
the median distance driven per driving day last month for users who churned was 608.78 km, versus
247.48 km for people who did not churn. Examine this further.

1. Create a new column in df called km_per_driving_day, which represents the mean distance
driven per driving day for each user.

2. Call the describe() method on the new column.

[30]: # 1. Create `km_per_driving_day` column
df['km_per_driving_day'] = df['driven_km_drives'] / df['driving_days']

2. Call `describe()` on the new column
df['km_per_driving_day'].describe()

[30]: count 1.499900e+04
mean inf
std NaN
min 3.022063e+00
25% 1.672804e+02
50% 3.231459e+02
75% 7.579257e+02

20

max inf
Name: km_per_driving_day, dtype: float64

What do you notice? The mean value is infinity, the standard deviation is NaN, and the max value
is infinity. Why do you think this is?

This is the result of there being values of zero in the driving_days column. Pandas imputes a
value of infinity in the corresponding rows of the new column because division by zero is undefined.

1. Convert these values from infinity to zero. You can use np.inf to refer to a value of infinity.

2. Call describe() on the km_per_driving_day column to verify that it worked.

[31]: # 1. Convert infinite values to zero
df.loc[df['km_per_driving_day']==np.inf, 'km_per_driving_day'] = 0

2. Confirm that it worked
df['km_per_driving_day'].describe()

[31]: count 14999.000000
mean 578.963113
std 1030.094384
min 0.000000
25% 136.238895
50% 272.889272
75% 558.686918
max 15420.234110
Name: km_per_driving_day, dtype: float64

The maximum value is 15,420 kilometers per drive day. This is physically impossible. Driving 100
km/hour for 12 hours is 1,200 km. It’s unlikely many people averaged more than this each day
they drove, so, for now, disregard rows where the distance in this column is greater than 1,200 km.

Plot a histogram of the new km_per_driving_day column, disregarding those users with values
greater than 1,200 km. Each bar should be the same length and have two colors, one color repre-
senting the percent of the users in that bar that churned and the other representing the percent
that were retained. This can be done by setting the multiple parameter of seaborn’s histplot()
function to fill.

[32]: # Histogram
plt.figure(figsize=(12,5))
sns.histplot(data=df,

x='km_per_driving_day',
bins=range(0,1201,20),
hue='label',
multiple='fill')

plt.ylabel('%', rotation=0)
plt.title('Churn rate by mean km per driving day');

21

https://seaborn.pydata.org/generated/seaborn.histplot.html

The churn rate tends to increase as the mean daily distance driven increases, confirming what was
found in the previous course. It would be worth investigating further the reasons for long-distance
users to discontinue using the app.

Churn rate per number of driving days Create another histogram just like the previous one,
only this time it should represent the churn rate for each number of driving days.

[33]: # Histogram
plt.figure(figsize=(12,5))
sns.histplot(data=df,

x='driving_days',
bins=range(1,32),
hue='label',
multiple='fill',
discrete=True)

plt.ylabel('%', rotation=0)
plt.title('Churn rate per driving day');

22

The churn rate is highest for people who didn’t use Waze much during the last month. The more
times they used the app, the less likely they were to churn. While 40% of the users who didn’t use
the app at all last month churned, nobody who used the app 30 days churned.

This isn’t surprising. If people who used the app a lot churned, it would likely indicate dissatis-
faction. When people who don’t use the app churn, it might be the result of dissatisfaction in the
past, or it might be indicative of a lesser need for a navigational app. Maybe they moved to a city
with good public transportation and don’t need to drive anymore.

Proportion of sessions that occurred in the last month Create a new column
percent_sessions_in_last_month that represents the percentage of each user’s total sessions
that were logged in their last month of use.

[34]: df['percent_sessions_in_last_month'] = df['sessions'] / df['total_sessions']

What is the median value of the new column?

[35]: df['percent_sessions_in_last_month'].median()

[35]: 0.42309702992763176

Now, create a histogram depicting the distribution of values in this new column.

[36]: # Histogram
histogrammer('percent_sessions_in_last_month',

hue=df['label'],
multiple='layer',
median_text=False)

Median: 0.4

23

Check the median value of the n_days_after_onboarding variable.

[37]: df['n_days_after_onboarding'].median()

[37]: 1741.0

Half of the people in the dataset had 40% or more of their sessions in just the last month, yet the
overall median time since onboarding is almost five years.

Make a histogram of n_days_after_onboarding for just the people who had 40% or more of their
total sessions in the last month.

[38]: # Histogram
data = df.loc[df['percent_sessions_in_last_month']>=0.4]
plt.figure(figsize=(5,3))
sns.histplot(x=data['n_days_after_onboarding'])
plt.title('Num. days after onboarding for users with >=40% sessions in last␣
↪→month');

24

The number of days since onboarding for users with 40% or more of their total sessions occurring
in just the last month is a uniform distribution. This is very strange. It’s worth asking Waze why
so many long-time users suddenly used the app so much in the last month.

4.3.2 Task 3b. Handling outliers

The box plots from the previous section indicated that many of these variables have outliers.
These outliers do not seem to be data entry errors; they are present because of the right-skewed
distributions.

Depending on what you’ll be doing with this data, it may be useful to impute outlying data with
more reasonable values. One way of performing this imputation is to set a threshold based on a
percentile of the distribution.

To practice this technique, write a function that calculates the 95th percentile of a given column,
then imputes values > the 95th percentile with the value at the 95th percentile. such as the 95th
percentile of the distribution.

[39]: def outlier_imputer(column_name, percentile):
Calculate threshold
threshold = df[column_name].quantile(percentile)
Impute threshold for values > than threshold
df.loc[df[column_name] > threshold, column_name] = threshold

print('{:>25} | percentile: {} | threshold: {}'.format(column_name,␣
↪→percentile, threshold))

Next, apply that function to the following columns: * sessions * drives * total_sessions *
driven_km_drives * duration_minutes_drives

25

[40]: for column in ['sessions', 'drives', 'total_sessions',
'driven_km_drives', 'duration_minutes_drives']:
outlier_imputer(column, 0.95)

sessions | percentile: 0.95 | threshold: 243.0
drives | percentile: 0.95 | threshold: 201.0

total_sessions | percentile: 0.95 | threshold: 454.3632037399997
driven_km_drives | percentile: 0.95 | threshold: 8889.7942356

duration_minutes_drives | percentile: 0.95 | threshold: 4668.899348999999

Call describe() to see if your change worked.

[41]: df.describe()

[41]: ID sessions drives total_sessions \
count 14999.000000 14999.000000 14999.000000 14999.000000
mean 7499.000000 76.568705 64.058204 184.031320
std 4329.982679 67.297958 55.306924 118.600463
min 0.000000 0.000000 0.000000 0.220211
25% 3749.500000 23.000000 20.000000 90.661156
50% 7499.000000 56.000000 48.000000 159.568115
75% 11248.500000 112.000000 93.000000 254.192341
max 14998.000000 243.000000 201.000000 454.363204

n_days_after_onboarding total_navigations_fav1 \
count 14999.000000 14999.000000
mean 1749.837789 121.605974
std 1008.513876 148.121544
min 4.000000 0.000000
25% 878.000000 9.000000
50% 1741.000000 71.000000
75% 2623.500000 178.000000
max 3500.000000 1236.000000

total_navigations_fav2 driven_km_drives duration_minutes_drives \
count 14999.000000 14999.000000 14999.000000
mean 29.672512 3939.632764 1789.647426
std 45.394651 2216.041510 1222.705167
min 0.000000 60.441250 18.282082
25% 0.000000 2212.600607 835.996260
50% 9.000000 3493.858085 1478.249859
75% 43.000000 5289.861262 2464.362632
max 415.000000 8889.794236 4668.899349

activity_days driving_days km_per_driving_day \
count 14999.000000 14999.000000 14999.000000
mean 15.537102 12.179879 578.963113
std 9.004655 7.824036 1030.094384

26

min 0.000000 0.000000 0.000000
25% 8.000000 5.000000 136.238895
50% 16.000000 12.000000 272.889272
75% 23.000000 19.000000 558.686918
max 31.000000 30.000000 15420.234110

percent_sessions_in_last_month
count 14999.000000
mean 0.449255
std 0.286919
min 0.000000
25% 0.196221
50% 0.423097
75% 0.687216
max 1.530637

Conclusion Analysis revealed that the overall churn rate is ~17%, and that this rate is consistent
between iPhone users and Android users.

Perhaps you feel that the more deeply you explore the data, the more questions arise. This is not
uncommon! In this case, it’s worth asking the Waze data team why so many users used the app so
much in just the last month.

Also, EDA has revealed that users who drive very long distances on their driving days are more likely
to churn, but users who drive more often are less likely to churn. The reason for this discrepancy
is an opportunity for further investigation, and it would be something else to ask the Waze data
team about.

4.4 PACE: Execute

Consider the questions in your PACE Strategy Document to reflect on the Execute stage.

4.4.1 Task 4a. Results and evaluation

Having built visualizations in Python, what have you learned about the dataset? What other
questions have your visualizations uncovered that you should pursue?

Pro tip: Put yourself in your client’s perspective. What would they want to know?

Use the following code fields to pursue any additional EDA based on the visualizations you’ve al-
ready plotted. Also use the space to make sure your visualizations are clean, easily understandable,
and accessible.

Ask yourself: Did you consider color, contrast, emphasis, and labeling?

I have learned ….

• There is missing data in the user churn label, so we might need further data processing before
further analysis.

27

• There are many outlying observations for drives, so we might consider a variable transforma-
tion to stabilize the variation.

• The number of drives and the number of sessions are both strongly correlated, so they might
provide redundant information when we incorporate both in a model.

• On average, retained users have fewer drives than churned users.

My other questions are ….

• How does the missingness in the user churn label arise?
• Who are the users with an extremely large number of drives? Are they ridesharing drivers or

commercial drivers?
• Why do retained users have fewer drives than churned users? Is it because churned users

have a longer history of using the Waze app?
• What is the user demographic for retained users and churned users?

My client would likely want to know …

• What are the key variables associated with user churn?
• Can we implement policies to reduce user churn?

Use the following two code blocks (add more blocks if you like) to do additional EDA you feel is
important based on the given scenario.

[42]: df['monthly_drives_per_session_ratio'] = (df['drives']/df['sessions'])

[43]: df.head(10)

[43]: ID label sessions drives total_sessions n_days_after_onboarding \
0 0 retained 243 201 296.748273 2276
1 1 retained 133 107 326.896596 1225
2 2 retained 114 95 135.522926 2651
3 3 retained 49 40 67.589221 15
4 4 retained 84 68 168.247020 1562
5 5 retained 113 103 279.544437 2637
6 6 retained 3 2 236.725314 360
7 7 retained 39 35 176.072845 2999
8 8 retained 57 46 183.532018 424
9 9 churned 84 68 244.802115 2997

total_navigations_fav1 total_navigations_fav2 driven_km_drives \
0 208 0 2628.845068
1 19 64 8889.794236
2 0 0 3059.148818
3 322 7 913.591123
4 166 5 3950.202008
5 0 0 901.238699
6 185 18 5249.172828
7 0 0 7892.052468
8 0 26 2651.709764
9 72 0 6043.460295

28

duration_minutes_drives activity_days driving_days device \
0 1985.775061 28 19 Android
1 3160.472914 13 11 iPhone
2 1610.735904 14 8 Android
3 587.196542 7 3 iPhone
4 1219.555924 27 18 Android
5 439.101397 15 11 iPhone
6 726.577205 28 23 iPhone
7 2466.981741 22 20 iPhone
8 1594.342984 25 20 Android
9 2341.838528 7 3 iPhone

km_per_driving_day percent_sessions_in_last_month \
0 138.360267 0.953670
1 1246.901868 0.406856
2 382.393602 0.841186
3 304.530374 0.724968
4 219.455667 0.499266
5 81.930791 0.404229
6 228.224906 0.012673
7 394.602623 0.221499
8 132.585488 0.310573
9 2014.486765 0.343134

monthly_drives_per_session_ratio
0 0.827160
1 0.804511
2 0.833333
3 0.816327
4 0.809524
5 0.911504
6 0.666667
7 0.897436
8 0.807018
9 0.809524

4.4.2 Task 4b. Conclusion

Now that you’ve explored and visualized your data, the next step is to share your findings with
Harriet Hadzic, Waze’s Director of Data Analysis. Consider the following questions as you prepare
to write your executive summary. Think about key points you may want to share with the team,
and what information is most relevant to the user churn project.

Questions:

1. What types of distributions did you notice in the variables? What did this tell you about the

29

data?

Nearly all the variables were either very right-skewed or uniformly distributed. For the
right-skewed distributions, this means that most users had values in the lower end of
the range for that variable. For the uniform distributions, this means that users were
generally equally likely to have values anywhere within the range for that variable.

2. Was there anything that led you to believe the data was erroneous or problematic in any
way?

Most of the data was not problematic, and there was no indication that any single variable
was completely wrong. However, several variables had highly improbable or perhaps even
impossible outlying values, such as driven_km_drives. Some of the monthly variables
also might be problematic, such as activity_days and driving_days, because one has
a max value of 31 while the other has a max value of 30, indicating that data collection
might not have occurred in the same month for both of these variables.

3. Did your investigation give rise to further questions that you would like to explore or ask the
Waze team about?

Yes. I’d want to ask the Waze data team to confirm that the monthly variables were
collected during the same month, given the fact that some have max values of 30 days
while others have 31 days. I’d also want to learn why so many long-time users suddenly
started using the app so much in just the last month. Was there anything that changed
in the last month that might prompt this kind of behavior?

4. What percentage of users churned and what percentage were retained?

Less than 18% of users churned, and ~82% were retained.

5. What factors correlated with user churn? How?

Distance driven per driving day had a positive correlation with user churn. The farther
a user drove on each driving day, the more likely they were to churn. On the other
hand, number of driving days had a negative correlation with churn. Users who drove
more days of the last month were less likely to churn.

6. Did newer uses have greater representation in this dataset than users with longer tenure?
How do you know?

No. Users of all tenures from brand new to ~10 years were relatively evenly represented
in the data. This is borne out by the histogram for n_days_after_onboarding, which
reveals a uniform distribution for this variable.

Congratulations! You’ve completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

30

	Waze Project
	Course 3 End-of-course project: Exploratory data analysis
	Visualize a story in Python
	PACE stages
	PACE: Plan
	Task 1. Imports and data loading

	PACE: Analyze
	Task 2. Data exploration and cleaning

	PACE: Construct
	Task 3a. Visualizations
	Task 3b. Handling outliers

	PACE: Execute
	Task 4a. Results and evaluation
	Task 4b. Conclusion

