Exemplar Course 3 Automatidata project lab
February 4, 2024

1 Course 3 Automatidata project

Course 3 - Go Beyond the Numbers: Translate Data into Insights

You are the newest data professional in a fictional data consulting firm: Automatidata. The team
is still early into the project, having only just completed an initial plan of action and some early
Python coding work.

Luana Rodriquez, the senior data analyst at Automatidata, is pleased with the work you have
already completed and requests your assistance with some EDA and data visualization work for
the New York City Taxi and Limousine Commission project (New York City TLC) to get a general
understanding of what taxi ridership looks like. The management team is asking for a Python
notebook showing data structuring and cleaning, as well as any matplotlib/seaborn visualizations
plotted to help understand the data. At the very least, include a box plot of the ride durations and
some time series plots, like a breakdown by quarter or month.

Additionally, the management team has recently asked all EDA to include Tableau visualizations.
For this taxi data, create a Tableau dashboard showing a New York City map of taxi/limo trips by
month. Make sure it is easy to understand to someone who isn’t data savvy, and remember that
the assistant director at the New York City TLC is a person with visual impairments.

A notebook was structured and prepared to help you in this project. Please complete the following
questions.

2 Course 3 End-of-course project: Exploratory data analysis

In this activity, you will examine data provided and prepare it for analysis. You will also design
a professional data visualization that tells a story, and will help data-driven decisions for business
needs.

Please note that the Tableau visualization activity is optional, and will not affect your completion
of the course. Completing the Tableau activity will help you practice planning out and plotting a
data visualization based on a specific business need. The structure of this activity is designed to
emulate the proposals you will likely be assigned in your career as a data professional. Completing
this activity will help prepare you for those career moments.

The purpose of this project is to conduct exploratory data analysis on a provided data set. Your
mission is to continue the investigation you began in C2 and perform further EDA on this data
with the aim of learning more about the variables.

The goal is to clean data set and create a visualization.
This activity has 4 parts:

Part 1: Imports, links, and loading

Part 2: Data Exploration * Data cleaning
Part 3: Building visualizations

Part 4: Evaluate and share results

Follow the instructions and answer the questions below to complete the activity. Then, you will
complete an Executive Summary using the questions listed on the PACE Strategy Document.

Be sure to complete this activity before moving on. The next course item will provide you with a
completed exemplar to compare to your own work.

3 Visualize a story in Tableau and Python

4 PACE stages

. [Plan] (#scrollTo=psz51YkZVwtN&line=3&uniqifier=1)

. [Analyze] (#scrollTo=mA7Mz_SnI8km&line=4&uniqifier=1)

. [Construct] (#scrollTo=Lca9c8X0N8lc&line=2&uniqifier=1)
. [Execute] (#scrollTo=401PgchTPr4E&line=2&uniqifier=1)

Throughout these project notebooks, you'll see references to the problem-solving framework PACE.
The following notebook components are labeled with the respective PACE stage: Plan, Analyze,
Construct, and Execute.

4.1 PACE: Plan

In this stage, consider the following questions where applicable to complete your code response:
Exemplar response:

1. Identify any outliers:

o What methods are best for identifying outliers?

e Use numpy functions to investigate the mean() and median() of the data and understand
range of data values

e Use a boxplot to visualize the distribution of the data
o Use histograms to visualize the distribution of the data

o How do you make the decision to keep or exclude outliers from any future models?

[1]7:

[2]:

e There are three main options for dealing with outliers: keeping them as they are, deleting
them, or reassigning them. Whether you keep outliers as they are, delete them, or reassign
values is a decision that you make taking into account the nature of the outlying data and
the assumptions of the model you are building. To help you make the decision, you can start
with these general guidelines:

— Delete them: If you are sure the outliers are mistakes, typos, or errors and the dataset
will be used for modeling or machine learning, then you are more likely to decide to
delete outliers. Of the three choices, you'll use this one the least.

— Reassign them: If the dataset is small and/or the data will be used for modeling or
machine learning, you are more likely to choose a path of deriving new values to replace
the outlier values.

— Leave them: For a dataset that you plan to do EDA /analysis on and nothing else, or
for a dataset you are preparing for a model that is resistant to outliers, it is most likely
that you are going to leave them in.

4.1.1 Task 1. Imports, links, and loading

Go to Tableau Public The following link will help you complete this activity. Keep Tableau Public
open as you proceed to the next steps.

Link to supporting materials: Public Tableau: https://public.tableau.com/s/

For EDA of the data, import the data and packages that would be most helpful, such as pandas,
numpy and matplotlib.

Then, import the dataset.

import pandas as pd

import matplotlib.pyplot as plt
import numpy as np

import datetime as dt

import seaborn as sns

Note: As shown in this cell, the dataset has been automatically loaded in for you. You do not

need to download the .csv file, or provide more code, in order to access the dataset and proceed
with this lab. Please continue with this activity by completing the following instructions.

df=pd.read_csv('data/2017_Yellow_Taxi_Trip_Data.csv')

4.2 PACE: Analyze

Consider these questions in your PACE Strategy Document to reflect on the Analyze stage.

4.2.1 Task 2a. Data exploration and cleaning

Decide which columns are applicable

The first step is to assess your data. Check the Data Source page on Tableau Public to get a sense
of the size, shape and makeup of the data set. Then answer these questions to yourself:

Given our scenario, which data columns are most applicable? Which data columns can I eliminate,
knowing they won’t solve our problem scenario?

Consider functions that help you understand and structure the data.

e head()

e describe()
e info()

e groupby()
e sortby()

Consider these questions as you work:
What do you do about missing data (if any)?
Are there data outliers?

What do the distributions of your variables tell you about the question you’re asking or the problem
you're trying to solve?

Find these answers later in the notebook.
Start by discovering, using head and size.

[3]: df.head(10)

[3]: Unnamed: O VendorID tpep_pickup_datetime tpep_dropoff_datetime \
0 24870114 2 03/25/2017 8:55:43 AM 03/25/2017 9:09:47 AM
1 35634249 1 04/11/2017 2:53:28 PM 04/11/2017 3:19:58 PM
2 106203690 1 12/15/2017 7:26:56 AM 12/15/2017 7:34:08 AM
3 38942136 2 05/07/2017 1:17:59 PM 05/07/2017 1:48:14 PM
4 30841670 2 04/15/2017 11:32:20 PM 04/15/2017 11:49:03 PM
5 23345809 2 03/25/2017 8:34:11 PM 03/25/2017 8:42:11 PM
6 37660487 2 05/03/2017 7:04:09 PM 05/03/2017 8:03:47 PM
7 69059411 2 08/15/2017 5:41:06 PM 08/15/2017 6:03:05 PM
8 8433159 2 02/04/2017 4:17:07 PM 02/04/2017 4:29:14 PM
9 95294817 1 11/10/2017 3:20:29 PM 11/10/2017 3:40:55 PM

passenger_count trip_distance RatecodeID store_and_fwd_flag \

0 6 3.34 1 N
1 1 1.80 1 N
2 1 1.00 1 N
3 1 3.70 1 N
4 1 4.37 1 N
5 6 2.30 1 N
6 1 12.83 1 N
7 1 2.98 1 N
8 1 1.20 1 N
9 1 1.60 1 N

[4]:

[4]:

[5]:

[5]:

PULocationID DOLocationID payment_type fare_amount

0 100 231 1

1 186 43 1

2 262 236 1

3 188 97 1

4 4 112 2

5 161 236 1

6 79 241 1

7 237 114 1

8 234 249 2

9 239 237 1
tip_amount tolls_amount improvement_surcharge

0 2.76 0.0 0.3

1 4.00 0.0 0.3

2 1.45 0.0 0.3

3 6.39 0.0 0.3

4 0.00 0.0 0.3

5 2.06 0.0 0.3

6 9.86 0.0 0.3

7 1.78 0.0 0.3

8 0.00 0.0 0.3

9 2.75 0.0 0.3

df .size

408582

Use describe...

df .describe()

Unnamed: O VendorID passenger_count

count 2.269900e+04 22699.000000 22699.000000
mean 5.675849e+07 1.5566236 1.642319
std 3.274493e+07 0.496838 1.285231
min 1.212700e+04 1.000000 0.000000
25% 2.852056e+07 1.000000 1.000000
50% 5.673150e+07 2.000000 1.000000
75% 8.537452e+07 2.000000 2.000000
max 1.134863e+08 2.000000 6.000000

13.
16.
6.
20.
16.
9.
47 .
16.
9.
13.

O O O U1 ©O O o1 o OO

extra mta_tax \

0.

OO r Pk OO OO Oo
O O O O U1 ot © OO

0

total_amount

16.
20.

8.
27.
17.
12.
59.
19.

9.
16.

56
80
75
69
80
36
16
58
80
55

0.

O O O O O O O oo
g o1 o1 oo oo oot On

trip_distance \

22699.

W= OO WwWN

33.

000000

.913313
.653171
.000000
.990000
.610000
.060000

RatecodeID PULocationID DOLocationID payment_type
count 22699.000000 22699.000000 22699.000000 22699.000000
1.336887
0.496211

mean 1.043394 162.412353 161.527997
std 0.708391 66.633373 70.139691

2

960000

fare_amount
2699.000000
13.026629
13.243791

[6]:

min 1
25% 1
50% 1
75% 1
max 99.

count 22699.
mean 0.
std 0.
min -1.
25% 0
50% 0
75% 0.
max 4

improvement_surcharge
22699.

count
mean
std
min
25%
50%
75%
max

And info.
df .info ()

.000000
.000000
.000000
.000000

000000

extra
000000
333275
463097
000000

.000000
.000000

500000

.500000

1.000000
114.000000
162.000000
233.000000
265.000000

mta_tax
22699.000000
0.497445
0.039465
-0.500000
0.500000
0.500000
0.500000
0.500000

1.000000
112.000000
162.000000
233.000000
265.000000

tip_amount
22699.000000

1.835781
2.800626
0.000000
0.000000
1.350000
2.450000
200.000000

total_amount

000000 22699.000000
.29956561 16.310502
.015673 16.097295
.300000 -120.300000
.300000 8.750000
.300000 11.800000
.300000 17.800000

.300000 1200.290000

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, O to 22698
Data columns (total 18 columns):
Non-Null Count

Column

0 Unnamed: O 22699
1 VendorID 22699
2 tpep_pickup_datetime 22699
3 tpep_dropoff_datetime 22699
4 passenger_count 22699
5 trip_distance 22699
6 RatecodelD 22699
7 store_and_fwd_flag 22699
8 PULocationID 22699
9 DOLocationID 22699
10 payment_type 22699
11 fare_amount 22699
12 extra 22699

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

float64
int64
object
int64
int64
int64
float64
float64

1.000000
1.000000
1.000000
2.000000
4.000000

tolls_amount
22699.000000

0.312542
1.399212
0.000000
0.000000
0.000000
0.000000
19.100000

-120.000000
6.500000
9.500000

14.500000
999.990000

13 mta_tax 22699 non-null float64

14 tip_amount 22699 non-null float64
15 +tolls_amount 22699 non-null float64
16 improvement_surcharge 22699 non-null float64
17 +total_amount 22699 non-null float64

dtypes: float64(8), int64(7), object(3)
memory usage: 3.1+ MB

Exemplar note: There is no missing data according to the results from the info () function.

4.2.2 Task 2b. Assess whether dimensions and measures are correct

On the data source page in Tableau, double check the data types for the applicable columns you
selected on the previous step. Pay close attention to the dimensions and measures to ensure they
are correct.

In Python, consider the data types of the columns. Consider: Do they make sense?

Review the link provided in the previous activity instructions to create the required Tableau visu-
alization.

4.2.3 Task 2c. Select visualization type(s)

Select data visualization types that will help you understand and explain the data.

Now that you know which data columns you’ll use, it is time to decide which data visualization
makes the most sense for EDA of the TLC dataset. What type of data visualization(s) would be
most helpful?

e Line graph

e Bar chart

e Box plot

o Histogram

e Heat map

e Scatter plot

e A geographic map

Exemplar response:

As you’ll see below, a bar chart, box plot and scatter plot will be most helpful in your understanding
of this data.

A box plot will be helpful to determine outliers and where the bulk of the data points reside in terms
of trip_distance, duration, and total_amount

A scatter plot will be helpful to visualize the trends and patters and outliers of critical variables,
such as trip_distance and total_amount

A bar chart will help determine average number of trips per month, weekday, weekend, etc.

4.3 PACE: Construct

Consider these questions in your PACE Strategy Document to reflect on the Construct stage.

4.3.1 Task 3. Data visualization

You've assessed your data, and decided on which data variables are most applicable. It’s time to
plot your visualization(s)!

4.4 Boxplots
Perform a check for outliers on relevant columns such as trip distance and trip duration. Remember,
some of the best ways to identify the presence of outliers in data are box plots and histograms.

Note: Remember to convert your date columns to datetime in order to derive total trip duration.

[7]: | # Convert data columns to datetime
df ['tpep_pickup_datetime']=pd.to_datetime(df['tpep_pickup_datetime'])
df ['tpep_dropoff_datetime']=pd.to_datetime(df ['tpep_dropoff_datetime'])

trip__distance

[8]: # Create box plot of trip_distance
plt.figure(figsize=(7,2))
plt.title('trip_distance')
sns.boxplot (data=None, x=df['trip_distance'], fliersize=1);

trip_distance

0 5 10 15 20 25 30 35
trip_distance

[9]: | # Create histogram of trip_distance
plt.figure(figsize=(10,5))
sns.histplot(df['trip_distance'], bins=range(0,26,1))
plt.title('Trip distance histogram');

Trip distance histogram

8000 4

7000

G000 1

5000 -

4000 A

Count

3000 4

2000 4

1000 A

10 15 20 5
frip_distance

Exemplar note: The majority of trips were journeys of less than two miles. The number of trips
falls away steeply as the distance traveled increases beyond two miles.

total _amount

[10]: | # Create boz plot of total_amount
plt.figure(figsize=(7,2))
plt.title('total_amount')
sns.boxplot (x=df ['total_amount'], fliersize=1);

total amount

0 200 400 600 800 1000 1200
total_amount

[11]: | # Create histogram of total_amount
plt.figure(figsize=(12,6))

[12]:

ax =
ax.set_xticks(range(-10,101,5))

ax.set_xticklabels(range(-10,101,5))
plt.title('Total amount histogram');

sns.histplot(df['total_amount'], bins=range(-10,101,5))

Total amount histogram

8000 1
7000
BOOD |
5000 1

£

=)

g 4000 1
3000

2000 1

0 35

40 45

50 55 ®0 65 W 75 80 8 90 8 100

total_amount

Exemplar note: The total cost of each trip also has a distribution that skews right, with most

costs falling in the $5-15 range.

tip__amount

Create boxz plot of tip_amount
plt.figure(figsize=(7,2))
plt.title('tip_amount')

sns.boxplot (x=df ['tip_amount'], fliersize=1);

tip_amount

0 25 50 75 100

125 150 175 200

tip_amount

10

[13]: | # Create histogram of tip_amount
plt.figure(figsize=(12,6))
ax = sns.histplot(df['tip_amount'], bins=range(0,21,1))
ax.set_xticks(range(0,21,2))
ax.set_xticklabels(range(0,21,2))
plt.title('Tip amount histogram');

Tip ameunt histogram

8000 1

7000 4

6000 1

5000 4

Count

4000 4

3000 4

2000 4

10 1z 14 16 18 20
tip_amount

Exemplar note: The distribution for tip amount is right-skewed, with nearly all the tips in the
$0-3 range.

tip__amount by vendor

[14]: # Create histogram of tip_amount by vendor
plt.figure(figsize=(12,7))
ax = sns.histplot(data=df, x='tip_amount', bins=range(0,21,1),
hue='VendorID',
multiple='stack',
palette='pastel')
ax.set_xticks(range(0,21,1))
ax.set_xticklabels(range(0,21,1))
plt.title('Tip amount by vendor histogram');

11

[15]:

Tip amount by vendor histogram

8000 — 2

7000

6000

5000

Count

4000

3000

2000

1000

T —
0 1 2 3 4 5 6 7 B % 0 11 122 13 14 15 1 17 18 18 20
tip_amount

Exemplar note: Separating the tip amount by vendor reveals that there are no noticeable aber-
rations in the distribution of tips between the two vendors in the dataset. Vendor two has a slightly
higher share of the rides, and this proportion is approximately maintained for all tip amounts.

Next, zoom in on the upper end of the range of tips to check whether vendor one gets noticeably
more of the most generous tips.

Create histogram of tip_amount by wvendor for tips > $10

tips_over_ten = df [df['tip_amount'] > 10]

plt.figure(figsize=(12,7))

ax = sns.histplot(data=tips_over_ten, x='tip_amount', bins=range(10,21,1),
hue='VendorID',
multiple='stack',
palette='pastel')

ax.set_xticks(range(10,21,1))

ax.set_xticklabels(range(10,21,1))

plt.title('Tip amount by vendor histogram');

12

[16]:

[16]:

[17]:

Tip amount by vendor histogram

160 VendorlD
 —
 —

140

120

100

E
=
5 80

60

40

20

i) T }
10 1 1z 15 14 15 16 17 15 13 20
tip_amount

Exemplar note: The proportions are maintained even at these higher tip amounts, with the
exception being at highest extremity, but this is not noteworthy due to the low sample size at these
tip amounts.

Mean tips by passenger count

Examine the unique values in the passenger_count column.

df ['passenger_count'] .value_counts()

1 16117
2 3305
5 1143
3 953
6 693
4 455
0 33
Name: passenger_count, dtype: int64

Exemplar note: Nearly two thirds of the rides were single occupancy, though there were still
nearly 700 rides with as many as six passengers. Also, there are 33 rides with an occupancy count
of zero, which doesn’t make sense. These would likely be dropped unless a reasonable explanation
can be found for them.

Calculate mean tips by passenger_count
mean_tips_by_passenger_count = df.groupby(['passenger_count']).
—mean() [['tip_amount']]

13

mean_tips_by_passenger_count

[17]: tip_amount
passenger_count
.135758
.848920
.856378
.716768
.530264
.873185
.720260

DO W NP O
i o o o i]

[18]: # Create bar plot for mean tips by passenger count

data = mean_tips_by_passenger_count.tail(-1)

pal = sns.color_palette("Greens_d", len(data))

rank = datal['tip_amount'].argsort().argsort()

plt.figure(figsize=(12,7))

ax = sns.barplot(x=data.index,
y=datal'tip_amount'],
palette=np.array(pall[::-1]) [rank])

ax.axhline(df ['tip_amount'] .mean(), ls='--', color='red', label='global mean')

ax.legend ()

plt.title('Mean tip amount by passenger count', fontsize=16);

Mean tip amount by passenger count

=== global mean

175 1

150 1

125

100 4

tip_amount

0.75 1

0.25 1

1 2 3 4 5 B
passenger_count

Exemplar note: Mean tip amount varies very little by passenger count. Although it does drop

14

noticeably for four-passenger rides, it’s expected that there would be a higher degree of fluctuation
because rides with four passengers were the least plentiful in the dataset (aside from rides with zero
passengers).

Create month and day columns

[19]: # Create a month column
df ['month'] = df['tpep_pickup_datetime'].dt.month_name()
Create a day column
df['day'] = df ['tpep_pickup_datetime'].dt.day_name()

Plot total ride count by month

Begin by calculating total ride count by month.

[20]: | # Get total number of rides for each month
monthly_rides = df['month'].value_counts()
monthly_rides

[20]: March 2049
October 2027
April 2019
May 2013
January 1997
June 1964
December 1863
November 1843
February 1769
September 1734
August 1724
July 1697

Name: month, dtype: int64

Exemplar note: The months are out of order.

Reorder the results to put the months in calendar order.

[21]: | # Reorder the monthly ride list so months go in order
month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July’,
"August', 'September', 'October', 'November', 'December']

monthly_rides = monthly_rides.reindex(index=month_order)
monthly_rides

[21]: January 1997
February 1769
March 2049
April 2019
May 2013
June 1964

15

July 1697

August 1724
September 1734
October 2027
November 1843
December 1863

Name: month, dtype: int64

[22]: | # Show the indez
monthly_rides.index

[22]: Index(['January', 'February', 'March', 'April', 'May', 'June', 'July',
"August', 'September', 'October', 'November', 'December'],
dtype='object')

[23]: # Create a bar plot of total rides per month
plt.figure(figsize=(12,7))
ax = sns.barplot(x=monthly_rides.index, y=monthly_rides)
ax.set_xticklabels(month_order)
plt.title('Ride count by month', fontsize=16);

Ride count by month

2000 A

1750 1

750 1

500 A

250 1

January February March April May June July Lugust September COctcber Movember December

Exemplar note: Monthly rides are fairly consistent, with notable dips in the summer months of
July, August, and September, and also in February.

Plot total ride count by day
Repeat the above process, but now calculate the total rides by day of the week.

16

[24]: | # Repeat the above process, this time for rides by day
daily_rides = df['day'].value_counts()
day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',.
—'Saturday', 'Sunday']
daily_rides = daily_rides.reindex(index=day_order)
daily_rides

[24]: Monday 2931
Tuesday 3198
Wednesday 3390
Thursday 3402
Friday 3413
Saturday 3367
Sunday 2998

Name: day, dtype: int64

[25]: # Create bar plot for ride count by day
plt.figure(figsize=(12,7))
ax = sns.barplot(x=daily_rides.index, y=daily_rides)
ax.set_xticklabels(day_order)
ax.set_ylabel('Count')
plt.title('Ride count by day', fontsize=16);

Ride count by day

3500 4

3000

2500 1

2000 1

Count

1500 4

1000 +

500 4

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Exemplar note: Suprisingly, Wednesday through Saturday had the highest number of daily rides,
while Sunday and Monday had the least.

17

[26]:

[26] :

[27]:

Plot total revenue by day of the week

Repeat the above process, but now calculate the total revenue by day of the week.

Repeat the process, this time for total revenue by day
day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',.
—'Saturday', 'Sunday']
total_amount_day = df.groupby('day').sum() [['total_amount']]
total_amount_day = total_amount_day.reindex(index=day_order)
total_amount_day
total_amount
day
Monday 49574 .37
Tuesday 52527.14
Wednesday 55310.47
Thursday 57181.91
Friday 55818.74
Saturday 51195.40
Sunday 48624.06
Create bar plot of total revenue by day

plt.figure(figsize=(12,7))

ax = sns.barplot(x=total_amount_day.index, y=total_amount_day['total_amount'])
ax.set_xticklabels(day_order)

ax.set_ylabel('Revenue (USD)')

plt.title('Total revenue by day', fontsize=16);

60000 Total revenue by day

50000 4

40000 4

30000 A

Revenue (USD)

20000 4

10000 4

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

18

Exemplar note: Thursday had the highest gross revenue of all days, and Sunday and Monday
had the least. Interestingly, although Saturday had only 35 fewer rides than Thursday, its gross
revenue was ~$6,000 less than Thursday’s—more than a 10% drop.

Plot total revenue by month

[28]: | # Repeat the process, this time for total revenue by month
total_amount_month = df.groupby('month').sum() [['total_amount']]
total_amount_month = total_amount_month.reindex(index=month_order)
total_amount_month

[28]: total_amount
month
January 31735.25
February 28937.89
March 33085.89
April 32012.54
May 33828.58
June 32920.52
July 26617 .64
August 27759 .56
September 28206. 38
October 33065.83
November 30800.44
December 31261.57

[29]: # Create a bar plot of total revenue by month
plt.figure(figsize=(12,7))
ax = sns.barplot(x=total_amount_month.index,
—y=total_amount_month['total_amount'])
plt.title('Total revenue by month', fontsize=16);

19

[30]:

[30]:

[31]:

[31]:

Total revenue by month

35000 4

30000

25000 1

10000

3000 4

January February March April August September October MWovember December

Exemplar note: Monthly revenue generally follows the pattern of monthly rides, with noticeable
dips in the summer months of July, August, and September, and also one in February.

You can create a scatterplot in Tableau Public, which can be easier to manipulate and present. If
you’d like step by step instructions, you can review the following link. Those instructions create
a scatterplot showing the relationship between total amount and trip_ distance. Consider adding
the Tableau visualization to your executive summary, and adding key insights from your findings
on those two variables.

Tableau visualization guidelines
Plot mean trip distance by drop-off location

Get number of unique drop-off location IDs
df ['DOLocationID'] .nunique()

216
Calculate the mean trip distance for each drop-off location
distance_by_dropoff = df.groupby('DOLocationID') .mean() [['trip_distance']]
Sort the results in descending order by mean trip distance
distance_by_dropoff = distance_by_dropoff.sort_values(by='trip_distance')
distance_by_dropoff

trip_distance
DOLocationID

20

https://docs.google.com/document/d/1pcfUlttD2Y_a9A4VrKPzikZWCAfFLsBAhuKuomjcUjA/template/preview#heading=h.8983o7y9d2y2

[32]:

207 1.200000
193 1.390556
237 1.555494
234 1.727806
137 1.818852
51 17.310000
11 17.945000
210 20.500000
29 21.650000
23 24.275000

[216 rows x 1 columns]

Create a bar plot of mean trip distances by drop-off location in ascending,
—order by distance

plt.figure(figsize=(14,6))

ax = sns.barplot(x=distance_by_dropoff.index,
y=distance_by_dropoff['trip_distance'],
order=distance_by_dropoff.index)

ax.set_xticklabels([])

ax.set_xticks([])

plt.title('Mean trip distance by drop-off location', fontsize=16);

Mean trip distance by drop-off location

o

trip_distance

5

DOLacationlD

Exemplar note: This plot presents a characteristic curve related to the cumulative density func-
tion of a normal distribution. In other words, it indicates that the drop-off points are relatively
evenly distributed over the terrain. This is good to know, because geographic coordinates were not
included in this dataset, so there was no obvious way to test for the distibution of locations.

To confirm this conclusion, consider the following experiment: 1. Create a sample of coordinates
from a normal distribution—in this case 1,500 pairs of points from a normal distribution with a

21

[33]:

mean of 10 and a standard deviation of 5 2. Calculate the distance between each pair of coordinates
3. Group the coordinates by endpoint and calculate the mean distance between that endpoint and
all other points it was paired with 4. Plot the mean distance for each unique endpoint

1. Generate random points on a 2D plane from a nmormal distribution

test = np.round(np.random.normal(10, 5, (3000, 2)), 1)

midway = int(len(test)/2) # Calculate midpoint of the array of coordinates
start = test[:midway] # Isolate first half of array ("pick-up locations")
end = test[midway:] # Isolate second half of array ("drop-off locations")

2. Calculate Euclidean distances between points in first half and second half,
—of array

distances = (start - end)**2

distances = distances.sum(axis=-1)

distances = np.sqrt(distances)

3. Group the coordinates by "drop-off location"”, compute mean distance
test_df = pd.DataFrame({'start': [tuple(x) for x in start.tolist()],
'end': [tuple(x) for x in end.tolist()],
'"distance': distances})
data = test_df[['end', 'distance']].groupby('end') .mean()
data = data.sort_values(by='distance')

4. Plot the mean distance between each endpoint ("drop-off location") and ally
—points 4t connected to
plt.figure(figsize=(14,6))
ax = sns.barplot(x=data.index,
y=datal'distance'],
order=data.index)
ax.set_xticklabels([])
ax.set_xticks([])
ax.set_xlabel ('Endpoint')
ax.set_ylabel('Mean distance to all other points')
ax.set_title('Mean distance between points taken randomly from normal,,
—distribution');

22

[34]:

[34]:

[35]:

Mean distance between points taken randomly from normal distribution

o =1

Mean distance to all other points
=

Endpoint

Exemplar note: The curve described by this graph is nearly identical to that of the mean distance
traveled by each taxi ride to each drop-off location. This reveals that the drop-off locations in the
taxi dataset are evenly distributed geographically. Note, however, that this does not mean that
there was an even distrubtion of rides to each drop-off point. Examine this next.

Histogram of rides by drop-off location

First, check whether the drop-off locations IDs are consecutively numbered. For instance, does it
go 1, 2, 3, 4..., or are some numbers missing (e.g., 1, 3, 4..). If numbers aren’t all consecutive, the
histogram will look like some locations have very few or no rides when in reality there’s no bar
because there’s no location.

There are many ways to do this.

Check if all drop-off locations are consecutively numbered
df ['DOLocationID'] .max() - len(set(df['DOLocationID']))

49

Exemplar note: There are 49 numbers that do not represent a drop-off location.

To eliminate the spaces in the historgram that these missing numbers would create, sort the unique
drop-off location values, then convert them to strings. This will make the histplot function display
all bars directly next to each other.

plt.figure(figsize=(16,4))

DOLocationID column is numeric, sSo sort in ascending order
sorted_dropoffs = df ['DOLocationID'].sort_values()

Convert to string

sorted_dropoffs = sorted_dropoffs.astype('str')

Plot

sns.histplot(sorted_dropoffs, bins=range(0, df['DOLocationID'].max()+1, 1))
plt.xticks([1)

23

plt.xlabel('Drop-off locations')
plt.title('Histogram of rides by drop-off location', fontsize=16);

Histogram of rides by drop-off location

BOO

600

Count
&
(=]

200 4

Drop-off locations

Exemplar note: Notice that out of the 200+ drop-off locations, a disproportionate number of
locations receive the majority of the traffic, while all the rest get relatively few trips. It’s likely
that these high-traffic locations are near popular tourist attractions like the Empire State Building
or Times Square, airports, and train and bus terminals. However, it would be helpful to know the
location that each ID corresponds with. Unfortunately, this is not in the data.

4.5 PACE: Execute

Consider the PACE Strategy Document to reflect on the Execute stage.

4.5.1 Task 4a. Results and evaluation

Having built visualizations in Tableau and in Python, what have you learned about the dataset?
What other questions have your visualizations uncovered that you should pursue?

Pro tip: Put yourself in your client’s perspective. What would they want to know?

Use the following code fields to pursue any additional EDA based on the visualizations you’ve al-
ready plotted. Also use the space to make sure your visualizations are clean, easily understandable,
and accessible.

Ask yourself: Did you consider color, contrast, emphasis, and labeling?
[Learners: insert your response here]

I have learned the highest distribution of trip distances are below 5 miles, but there are outliers
all the way out to 35 miles. There are no missing values.

My other questions are ... There are several trips that have a trip distance of “0.0.” What might
those trips be? Will they impact our model?

My client would likely want to know ... that the data includes dropoff and pickup times. We can
use that information to derive a trip duration for each line of data. This would likely be something
that will help the client with their model.

24

[36]: df['trip_duration'] = (df['tpep_dropoff_datetime'l]l-df['tpep_pickup_datetime'])

[37]: df.head(10)

[37]: Unnamed: O VendorID tpep_pickup_datetime tpep_dropoff_datetime \
0 24870114 2 2017-03-25 08:55:43 2017-03-25 09:09:47
1 35634249 1 2017-04-11 14:53:28 2017-04-11 15:19:58
2 106203690 1 2017-12-15 07:26:56 2017-12-15 07:34:08
3 38942136 2 2017-05-07 13:17:59 2017-05-07 13:48:14
4 30841670 2 2017-04-15 23:32:20 2017-04-15 23:49:03
5 23345809 2 2017-03-25 20:34:11 2017-03-25 20:42:11
6 37660487 2 2017-05-03 19:04:09 2017-05-03 20:03:47
7 69059411 2 2017-08-15 17:41:06 2017-08-15 18:03:05
8 8433159 2 2017-02-04 16:17:07 2017-02-04 16:29:14
9 95294817 1 2017-11-10 15:20:29 2017-11-10 15:40:55

passenger_count trip_distance RatecodeID store_and_fwd_flag \

0 6 3.34 1 N
1 1 1.80 1 N
2 1 1.00 1 N
3 1 3.70 1 N
4 1 4.37 1 N
5 6 2.30 1 N
6 1 12.83 1 N
7 1 2.98 1 N
8 1 1.20 1 N
9 1 1.60 1 N
PULocationID DOLocationID .. fare_amount extra mta_tax tip_amount \
0 100 231 . 13.0 0.0 0.5 2.76
1 186 43 .. 16.0 0.0 0.5 4.00
2 262 236 .. 6.5 0.0 0.5 1.45
3 188 97 . 20.5 0.0 0.5 6.39
4 4 112 . 16.5 0.5 0.5 0.00
5 161 236 .. 9.0 0.5 0.5 2.06
6 79 241 . 47.5 1.0 0.5 9.86
7 237 114 .. 16.0 1.0 0.5 1.78
8 234 249 . 9.0 0.0 0.5 0.00
9 239 237 . 13.0 0.0 0.5 2.75
tolls_amount improvement_surcharge total_amount month day \
0 0.0 0.3 16.56 March Saturday
1 0.0 0.3 20.80 April Tuesday
2 0.0 0.3 8.75 December Friday
3 0.0 0.3 27.69 May Sunday
4 0.0 0.3 17.80 April Saturday
5 0.0 0.3 12.36 March Saturday

25

59.16 May Wednesday
19.58 August Tuesday
9.80 February Saturday
16.55 November Friday

© 00 N O
O O O O
O O O O
O O O O
W w ww

trip_duration
days 00:14:04
days 00:26:30
days 00:07:12
days 00:30:15
days 00:16:43
days 00:08:00
days 00:59:38
days 00:21:59
days 00:12:07
days 00:20:26

© 0 N Ok W N+~ O
O O O O O O O O o o

[10 rows x 21 columns]

4.5.2 Task 4b. Conclusion

Make it professional and presentable

You have visualized the data you need to share with the director now. Remember, the goal of a
data visualization is for an audience member to glean the information on the chart in mere seconds.

Questions to ask yourself for reflection: Why is it important to conduct Exploratory Data Analysis?
Why are the data visualizations provided in this notebook useful?

Exemplar response:
EDA is important because ...

e EDA helps a data professional to get to know the data, understand its outliers, clean its
missing values, and prepare it for future modeling.

Visualizations helped me understand ..

e That this dataset has some outliers that we will need to make decisions on prior to designing
a model.

You’ve now completed professional data visualizations according to a business need. Well done!

Congratulations! You've completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

26

	Course 3 Automatidata project
	Course 3 End-of-course project: Exploratory data analysis
	Visualize a story in Tableau and Python
	PACE stages
	PACE: Plan
	Task 1. Imports, links, and loading

	PACE: Analyze
	Task 2a. Data exploration and cleaning
	Task 2b. Assess whether dimensions and measures are correct
	Task 2c. Select visualization type(s)

	PACE: Construct
	Task 3. Data visualization

	Boxplots
	PACE: Execute
	Task 4a. Results and evaluation
	Task 4b. Conclusion

