
Annotated follow-along guide_Compute descriptive statistics with
Python

February 28, 2024

1 Annotated follow-along guide: Compute descriptive statistics
with Python

This notebook contains the code used in the following instructional video: Compute descriptive
statistics with Python.

1.1 Introduction

Throughout this notebook, we will practice computing descriptive statistics to explore and summa-
rize a dataset. Before getting started, watch the associated instructional video and complete the
in-video question. All of the code we will be implementing and related instructions are contained
in this notebook.

1.2 Overview

Earlier in the program, you learned about the process of exploratory data analysis, or EDA, from
discovering to presenting your data. Whenever a data professional works with a new dataset, the
first step is to understand the context of the data during the discovering stage. Often, this involves
discussing the data with project stakeholders and reading documentation about the dataset and the
data collection process. After that, the data professional moves on to data cleaning and addresses
issues like missing data, incorrect values, and irrelevant data. Computing descriptive stats is a
common step to take after data cleaning.

In this notebook, we will use descriptive stats to get a basic understanding of the literacy rate data
for each district in your education dataset.

1.3 Import packages and libraries

Before getting started, we will need to import all the required libraries and extensions. Throughout
the course, we will be using pandas and numpy for operations and matplotlib for plotting.

[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

1

https://www.coursera.org/learn/the-power-of-statistics/lecture/66jFw/compute-descriptive-statistics-with-python
https://www.coursera.org/learn/the-power-of-statistics/lecture/66jFw/compute-descriptive-statistics-with-python


[2]: education_districtwise = pd.read_csv('education_districtwise.csv')

1.4 Explore the data

Let’s start with the head()function to get a quick overview of the dataset. Recall that head() will
return as many rows of data as you input into the variable field.

[3]: education_districtwise.head(10)

[3]: DISTNAME STATNAME BLOCKS VILLAGES CLUSTERS TOTPOPULAT OVERALL_LI
0 DISTRICT32 STATE1 13 391 104 875564.0 66.92
1 DISTRICT649 STATE1 18 678 144 1015503.0 66.93
2 DISTRICT229 STATE1 8 94 65 1269751.0 71.21
3 DISTRICT259 STATE1 13 523 104 735753.0 57.98
4 DISTRICT486 STATE1 8 359 64 570060.0 65.00
5 DISTRICT323 STATE1 12 523 96 1070144.0 64.32
6 DISTRICT114 STATE1 6 110 49 147104.0 80.48
7 DISTRICT438 STATE1 7 134 54 143388.0 74.49
8 DISTRICT610 STATE1 10 388 80 409576.0 65.97
9 DISTRICT476 STATE1 11 361 86 555357.0 69.90

Note: To interpret this data correctly, it’s important to understand that each row, or observation,
refers to a different district (and not, for example, to a state or a village). So, the VILLAGES column
indicates how many villages are in each district, the TOTPOPULAT column indicates the population
for each district, and the OVERALL_LI column indicates the literacy rate for each district.

1.4.1 Use describe() to compute descriptive stats

Now that we have a better understanding of the dataset, let’s use Python to compute descriptive
stats.

When computing descriptive stats in Python, the most useful function to know is describe().
Data professionals use the describe() function as a convenient way to calculate many key stats
all at once. For a numeric column, describe() gives you the following output:

• count: Number of non-NA/null observations
• mean: The arithmetic average
• std: The standard deviation
• min: The smallest (minimum) value
• 25%: The first quartile (25th percentile)
• 50%: The median (50th percentile)
• 75%: The third quartile (75th percentile)
• max: The largest (maximum) value

Reference: pandas.DataFrame.describe

Our main interest is the literacy rate. This data is contained in the OVERALL_LI column, which
shows the literacy rate for each district in the nation. Use the describe() function to reveal key

2

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.describe.html


stats about literacy rate.

[4]: education_districtwise['OVERALL_LI'].describe()

[4]: count 634.000000
mean 73.395189
std 10.098460
min 37.220000
25% 66.437500
50% 73.490000
75% 80.815000
max 98.760000
Name: OVERALL_LI, dtype: float64

The summary of stats gives us valuable information about the overall literacy rate. For example,
the mean helps to clarify the center of your dataset; we now know the average literacy rate is
about 73% for all districts. This information is useful in itself and also as a basis for comparison.
Knowing the mean literacy rate for all districts helps us understand which individual districts are
significantly above or below the mean.

Note: describe() excludes missing values (NaN) in the dataset from consideration. You may notice
that the count, or the number of observations for OVERALL_LI (634), is fewer than the number of
rows in the dataset (680). Dealing with missing values is a complex issue outside the scope of this
course.

You can also use the describe() function for a column with categorical data, like the STATNAME
column.

For a categorical column, describe() gives you the following output:

• count: Number of non-NA/null observations
• unique: Number of unique values
• top: The most common value (the mode)
• freq: The frequency of the most common value

[5]: education_districtwise['STATNAME'].describe()

[5]: count 680
unique 36
top STATE21
freq 75
Name: STATNAME, dtype: object

The unique category indicates that there are 36 states in our dataset. The top category indicates
that STATE21 is the most commonly occurring value, or mode. The frequency category tells you
that STATE21 appears in 75 rows, which means it includes 75 different districts.

This information may be helpful in determining which states will need more educational resources
based on their number of districts.

3



1.4.2 Functions for stats

The describe() function is also useful because it reveals a variety of key stats all at once. Python
also has separate functions for the mean, median, standard deviation, minimum, and maximum.
Earlier in the program, you used mean() and median() to detect outliers. These individual functions
are also useful if you want to do further computations based on descriptive stats. For example, you
can use the min() and max() functions together to compute the range of your data.

1.4.3 Use max() and min() to compute range

Recall that the range is the difference between the largest and smallest values in a dataset. In
other words, range = max - min. You can use max() and min() to compute the range for the
literacy rate of all districts in your dataset.

[6]: range_overall_li = education_districtwise['OVERALL_LI'].max() -␣
↪→education_districtwise['OVERALL_LI'].min()

range_overall_li

[6]: 61.540000000000006

The range in literacy rates for all districts is about 61.5 percentage points.

This large difference tells you that some districts have much higher literacy rates than others. Later
on, you will continue to analyze this data, and you can discover which districts have the lowest
literacy rates. This will help the government better understand literacy rates nationally and build
on their successful educational programs.

1.5 Conclusion

Congratulations! You’ve completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

You now understand how to compute descriptive statistics with Python. Going forward, you can
start using descriptive statistics to explore and summarize your own datasets.

4


	Annotated follow-along guide: Compute descriptive statistics with Python
	Introduction
	Overview
	Import packages and libraries
	Explore the data
	Use describe() to compute descriptive stats
	Functions for stats
	Use max() and min() to compute range

	Conclusion


