
Reference guide: How to handle outliers

Previously, you watched two videos about how to detect outliers and why handling outliers can

be an important part of data cleaning. At this point, you likely have a good understanding of

this. It is important to not only detect outliers, but also to have a plan for them.

That is precisely what you will review in this reading. Once you’ve detected outliers in your

dataset—whether global, contextual, or collective—how do you handle them?When it comes

to exploratory data analysis, or EDA, there are essentially three main ways to handle outliers:

delete, reassign, or leave them in.

Whether you keep outliers as they are, delete them, or reassign values is a decision that you

make on a dataset-by-dataset basis. To help you make the decision, you can start with these

general guidelines:

● Delete them: If you are sure the outliers are mistakes, typos, or errors and the dataset

will be used for modeling or machine learning, then you are more likely to decide to

delete outliers. Of the three choices, you’ll use this one the least.

● Reassign them: If the dataset is small and/or the data will be used for modeling or

machine learning, you are more likely to choose a path of deriving new values to

replace the outlier values.

● Leave them: For a dataset that you plan to do EDA/analysis on and nothing else, or for a

dataset you are preparing for a model that is resistant to outliers, it is most likely that

you are going to leave them in.

The videos discussing outliers went into detail on how to handle outliers when you leave them

in the dataset. In this reading, you will learn about some techniques for deleting and

reassigning outliers.



1. Delete them

For one way to delete outlier values, recall the coding you saw in the walkthrough video on

outliers. In that video, the instructor coded a box plot to help you visualize two different

outliers, as shown here:

box = sns.boxplot(x=df['number_of_strikes'])

g = plt.gca()

box.set_xticklabels(np.array([readable_numbers(x) for x in
g.get_xticks()]))

plt.xlabel('Number of strikes')

plt.title('Yearly number of lightning strikes');

The instructor then used the following code to find the lower limit—8.6M.

# Calculate 25th percentile of annual strikes
percentile25 = df['number_of_strikes'].quantile(0.25)

# Calculate 75th percentile of annual strikes
percentile75 = df['number_of_strikes'].quantile(0.75)

# Calculate interquartile range
iqr = percentile75 - percentile25



# Calculate upper and lower thresholds for outliers
upper_limit = percentile75 + 1.5 * iqr
lower_limit = percentile25 - 1.5 * iqr

print('Lower limit is: ', lower_limit)
print(upper_limit)

Lower limit is: 8585016.625

47356671.625

Next, a Boolean mask was used to filter the dataframe so it only contained rows where the

number of strikes was less than the lower limit.

print(df[df['number_of_strikes'] < lower_limit])

number_of_strikes year

1 209166 2019

33 7378836 1987

Once you know the cutoff points for outliers, if you want to delete them, you can use a Boolean

mask to select all rows such that: lower limit ≤ values ≤ upper limit.

mask = (df['number_of_strikes'] >= lower_limit) & (df['number_of_strikes']
<=upper_limit)

df = df[mask].copy()
print(df)

number_of_strikes year
0 15620068 2020
2 44600989 2018
3 35095195 2017
4 41582229 2016
5 37894191 2015
6 34919173 2014
7 27600898 2013
8 28807552 2012
9 31392058 2011
10 29068965 2010
11 30100585 2009
12 29790934 2008
13 30529064 2007
14 33292382 2006
15 38168699 2005
16 40023951 2004
17 39092327 2003
18 29916767 2002
19 25470095 2001
20 26276135 2000



21 27758681 1999
22 28802221 1998
23 26986915 1997
24 26190094 1996
25 22763540 1995
26 25094010 1994
27 24206929 1993
28 16371876 1992
29 16900934 1991
30 15839052 1990
31 14245186 1989
32 9150440 1988

Next, you’ll consider reassigning outliers by deriving new values that are a better fit for the

dataset.

2. Reassign them

Instead of deleting outliers, you can always reassign them, that is, change the values to ones

that fit within the general distribution of the dataset. There are two common ways to do this,

but many different ways can be used, depending on your use case:

1. Create a floor and ceiling at a quantile: For example, you could place walls at the 90th and

10th percentile of the distribution of data values. Any value above the 90%mark or below the

10%mark are changed to fit within the walls you set. Here is an example of what that code

might look like:

tenth_percentile = np.percentile(df['number_of_strikes'], 10)
ninetieth_percentile = np.percentile(df['number_of_strikes'], 90)
df['number_of_strikes'] = df['number_of_strikes'].apply(lambda x: (

tenth_percentile if x < tenth_percentile
else ninetieth_percentile if x > ninetieth_percentile
else x))

0 15620068.0
1 14657650.6
2 38815238.6
3 35095195.0
4 38815238.6
5 37894191.0
6 34919173.0
7 27600898.0
8 28807552.0
9 31392058.0



10 29068965.0
11 30100585.0
12 29790934.0
13 30529064.0
14 33292382.0
15 38168699.0
16 38815238.6
17 38815238.6
18 29916767.0
19 25470095.0
20 26276135.0
21 27758681.0
22 28802221.0
23 26986915.0
24 26190094.0
25 22763540.0
26 25094010.0
27 24206929.0
28 16371876.0
29 16900934.0
30 15839052.0
31 14657650.6
32 14657650.6
33 14657650.6
Name: number_of_strikes, dtype: float64

2. Impute the average: In some cases, it might be best to reassign all outlier values to match

the median or mean value. This will ensure that your median and distribution are based solely

on the non-outlier values, leaving the original outliers excluded. The actual imputation or

reassigning of values can be pretty simple if you’ve already found the outliers. The following

code block calculates the median of the values greater than the lower limit. Then it imputes the

median where values are lower than the lower limit.

median = np.median(df['number_of_strikes'][df['number_of_strikes'] >=
lower_limit])

df['number_of_strikes'] = np.where(df['number_of_strikes'] < lower_limit,
median, df['number_of_strikes'] )

Note:Outside of EDA, machine learning and regression modeling have more complex

variations on dealing with outliers. You will learn more about those topics later.



Key Takeaways

After detecting the outliers in a dataset, it is essential that you determine a strategy for how to

handle them. Because every dataset and data-based problem is different, your strategy will

vary. For the most part, you will be choosing between deleting, reassigning, or leaving outliers.


