
Reference guide: Python
concepts from Course 7
Google Cybersecurity Certificate

Sections
Comments

Conditional statements

Iterative statements

User-defined functions

Built-in functions

Importing module and libraries

String methods

List methods

Additional syntax for working with strings and lists

Regular expressions

File operations

Parsing

Comments

The following syntax is used to create a comment. (A comment is a note programmers
make about the intention behind their code.)

#

Starts a line that contains a Python comment

Print approved usernames

Contains a comment that indicates the purpose of the code that follows it is to
print approved usernames

""" (documentation strings)
Starts and ends a multi-line string that is often used as a Python comment; multi-line
comments are used when you need more than 79 characters in a single comment

"""

The estimate_attempts() function takes in a monthly
login attempt total and a number of months and
returns their product.

"""

Contains a multi-line comment that indicates the purpose of the
estimate_attempts() function

Conditional statements

The following keywords and operators are used in conditional statements.

if

Starts a conditional statement

if device_id != "la858zn":

Starts a conditional statement that evaluates whether the device_id variable
contains a value that is not equal to "la858zn"

if user in approved_list:

Starts a conditional statement that evaluates if the user variable contains a
value that is also found in the approved_list variable

elif

Precedes a condition that is only evaluated when previous conditions evaluate to
False; previous conditions include the condition in the if statement, and when
applicable, conditions in other elif statements

elif status == 500:

When previous conditions evaluate to False, evaluates if the status variable
contains a value that is equal to 500

else

Precedes a code section that only evaluates when all conditions that precede it within
the conditional statement evaluate to False; this includes the condition in the if
statement, and when applicable, conditions in elif statements

else:

When previous conditions evaluate to False, Python evaluates this else
statement

and

Requires both conditions on either side of the operator to evaluate to True

if username == "bmoreno" and login_attempts < 5:

Evaluates to True if the value in the username variable is equal to "bmoreno"
and the value in the login_attempts variable is less than 5

or

Requires only one of the conditions on either side of the operator to evaluate to True

if status == 100 or status == 102:

Evaluates to True if the value in the status variable is equal to 100 or the value
in the status variable is equal to 102

not

Negates a given condition so that it evaluates to False if the condition is True and to
True if it is False

if not account_status == "removed"

Evaluates to False if the value in the account_status variable is equal to
"removed" and evaluates to True if the value is the account_status variable
is not equal to "removed"

Iterative statements

The following keywords are used in iterative statements.

for

Signals the beginning of a for loop; used to iterate through a specified sequence

for username in ["bmoreno", "tshah", "elarson"]:

Signals the beginning of a for loop that iterates through the sequence of
elements in the list ["bmoreno", "tshah", "elarson"] using the loop
variable username

for i in range(10):

Signals the beginning of a for loop that iterates through a sequence of
numbers created by range(10) using the loop variable i

while

Signals the beginning of a while loop; used to iterate based on a condition

while login_attempts < 5:

Signals the beginning of a while loop that will iterate as long as the condition
that the value of login_attempts is less than 5 evaluates to True

break

Used to break out of a loop

continue

Used to skip a loop iteration and continue with the next one

User-defined functions

The following keywords are used when creating user-defined functions.

def

Placed before a function name to define a function

def greet_employee():

Defines the greet_employee() function

def calculate_fails(total_attempts, failed_attempts):

Defines the calculate_fails() function, which includes the two parameters
of total_attempts and failed_attempts

return

Used to return information from a function; when Python encounters this keyword, it
exits the function after returning the information

def calculate_fails(total_attempts, failed_attempts):
fail_percentage = failed_attempts / total_attempts
return fail_percentage

Returns the value of the fail_percentage variable from the
calculate_fails() function

Built-in functions

The following built-in functions are commonly used in Python.

print()

Outputs a specified object to the screen

print("login success")

Outputs the string "login success" to the screen

print(9 < 7)

Outputs the Boolean value of False to the screen after evaluating whether the
integer 9 is less than the integer 7

type()

Returns the data type of its input

print(type(51.1))

Returns the data type of float for the input of 51.1

print(type(True))

Returns the data type of Boolean for the input of True

range()

Generates a sequence of numbers

range(0, 5, 1)

Generates a sequence with a start point of 0, a stop point of 5, and an
increment of 1; because the start point is inclusive but the stop point is
exclusive, the generated sequence is 0, 1, 2, 3, and 4

range(5)

Generates a sequence with a stop point of 5; when the start point is not
specified, it is set at the default value of 0, and when the increment is not
specified, it is set at the default value of 1; the generated sequence is 0, 1, 2, 3,
and 4

max()

Returns the largest numeric input passed into it

print(max(10, 15, 5))

Returns 15 and outputs this value to the screen

min()

Returns the smallest numeric input passed into it

print(min(10, 15, 5))

Returns 5 and outputs this value to the screen

sorted()

Sorts the components of a list (or other iterable)

print(sorted([10, 15, 5]))

Sorts the elements of the list from smallest to largest and outputs the sorted list
of [5, 10, 15] to the screen

print(sorted(["bmoreno", "tshah", "elarson"]))

Sorts the elements in the list in alphabetical order and outputs the sorted list of
["bmoreno", "elarson", "tshah"] to the screen

str()

Converts the input object to a string

str(10)

Converts the integer 10 to the string "10"

len()

Returns the number of elements in an object

print(len("security"))

Returns and displays 8, the number of characters in the string "security"

Importing modules and libraries

The following keyword is used to import a module from the Python Standard Library or
to import an external library that has already been installed.

import

Searches for a module or library in a system and adds it to the local Python
environment

import statistics

Imports the statisticsmodule and all of its functions from the Python
Standard Library

from statistics import mean

Imports the mean() function of the statisticsmodule from the Python
Standard Library

from statistics import mean, median

Imports the mean() and median() functions of the statisticsmodule from
the Python Standard Library

String methods

The following methods can be applied to strings in Python.

.upper()

Returns a copy of the string in all uppercase letters

print("Security".upper())

Returns and displays a copy of the string "Security" as "SECURITY"

.lower()

Returns a copy of the string in all lowercase letters

print("Security".lower())

Returns and displays a copy of the string "Security" as "security"

.index()

Finds the first occurrence of the input in a string and returns its location

print("Security".index("c"))

Finds the first occurrence of the character "c" in the string "Security" and
returns and displays its index of 2

List methods

The following methods can be applied to lists in Python.

.insert()

Adds an element in a specific position inside the list

username_list = ["elarson", "fgarcia", "tshah"]
username_list.insert(2,"wjaffrey")

Adds the element "wjaffrey" at index 2 to the username_list; the list
becomes ["elarson", "fgarcia", "wjaffrey", "tshah"]

.remove()

Removes the first occurrence of a specific element inside a list

username_list = ["elarson", "bmoreno", "wjaffrey", "tshah"]
username_list.remove("elarson")

Removes the element "elarson" from the username_list; the list becomes
["fgarcia", "wjaffrey", "tshah"]

.append()

Adds input to the end of a list

username_list = ["bmoreno", "wjaffrey", "tshah"]
username_list.append("btang")

Adds the element "btang" to the end of the username_list; the list
becomes ["fgarcia", "wjaffrey", "tshah", "btang"]

.index()

Finds the first occurrence of an element in a list and returns its index

username_list = ["bmoreno", "wjaffrey", "tshah", "btang"]
print(username_list.index("tshah"))

Finds the first occurrence of the element "tshah" in the username_list and
returns and displays its index of 2

Additional syntax for working with strings and lists

The following syntax is useful when working with strings and lists.

+ (concatenation)
Combines two strings or lists together

device_id = "IT"+"nwp12"

Combines the string "IT"with the string "nwp12" and assigns the combined
string of "ITnwp12" to the variable device_id

users = ["elarson", "bmoreno"] + ["tshah", "btang"]

Combines the list ["elarson", "bmoreno"]with the list ["tshah",
"btang"] and assigns the combined list of ["elarson", "bmoreno",

"tshah", "btang"] to the variable users

[] (bracket notation)
Uses indices to extract parts of a string or list

print("h32rb17"[0])

Extracts the character at index 0, which is ("h"), from the string "h32rb17"

print("h32rb17"[0:3])

Extracts the slice [0:3], which is ("h32"), from the string "h32rb17"; the first
index in the slice (0) is included in the slice but the second index in the slice (3)
is excluded

username_list = ["elarson", "fgarcia", "tshah"]
print(username_list[2])

Extracts the element at index 2, which is ("tshah"), from the username_list

Regular expressions

The following remodule function and regular expression symbols are useful when
searching for patterns in strings.

re.findall()

Returns a list of matches to a regular expression

import re
re.findall("a53", "a53-32c .E")

Returns a list of matches to the regular expression pattern "a53" in the string
"a53-32c .E"; returns the list ["a53"]

\w

Matches with any alphanumeric character; also matches with the underscore (_)

import re
re.findall("\w", "a53-32c .E")

Returns a list of matches to the regular expression pattern "\w" in the string
"a53-32c .E"; matches to any alphanumeric character and returns the list
["a", "5", "3", "3", "2", "c", "E"]

.

Matches to all characters, including symbols

import re
re.findall(".", "a53-32c .E")

Returns a list of matches to the regular expression pattern "." in the string
"a53-32c .E"; matches to all characters and returns the list ["a", "5",
"3", "-", "3", "2", "c", " ", ".", "E"]

\d

Matches to all single digits

import re
re.findall("\d", "a53-32c .E")

Returns a list of matches to the regular expression pattern "\d" in the string
"a53-32c .E"; matches to all single digits and returns the list ["5", "3",
"3", "2"]

\s

Matches to all single spaces

import re
re.findall("\d", "a53-32c .E")

Returns a list of matches to the regular expression pattern "\s" in the string
"a53-32c .E"; matches to all single spaces and returns the list [" "]

\.

Matches to the period character

import re
re.findall("\.", "a53-32c .E")

Returns a list of matches to the regular expression pattern "\." in the string
"a53-32c .E"; matches to all instances of the period character and returns
the list ["."]

+

Represents one or more occurrences of a specific character

import re
re.findall("\w+", "a53-32c .E")

Returns a list of matches to the regular expression pattern "\w+" in the string
"a53-32c .E"; matches to one or more occurrences of any alphanumeric
character and returns the list ["a53", "32c", "E"]

*

Represents, zero, one or more occurrences of a specific character

import re
re.findall("\w*", "a53-32c .E")

Returns a list of matches to the regular expression pattern "\w*" in the string
"a53-32c .E"; matches to zero, one or more occurrences of any
alphanumeric character and returns the list ["a53", " ", "32c", " ", "
", "E"]

{ }

Represents a specified number of occurrences of a specific character; the number is
specified within the curly brackets

import re
re.findall("\w{3}", "a53-32c .E")

Returns a list of matches to the regular expression pattern "\w{3}" in the string
"a53-32c .E"; matches to exactly three occurrences of any alphanumeric
character and returns the list ["a53","32c"]

File operations

The following functions, methods, and keywords are used with operations involving
files.

with

Handles errors and manages external resources

with open("logs.txt", "r") as file:

Used to handle errors and manage external resources while opening a file; the
variable file stores the file information while inside of the with statement;
manages resources by closing the file after exiting the with statement

open()

Opens a file in Python

with open("login_attempts.txt", "r") as file:

Opens the file "login_attempts.txt" in order to read it ("r")
with open("update_log.txt", "w") as file:

Opens the file "update_log.txt" into the variable file in order to write over
its contents ("w")

with open(import_file, "a") as file:

Opens the file assigned to the import_file variable into the variable file in
order to append information to the end of it ("a")

as

Assigns a variable that references another object

with open("logs.txt", "r") as file:

Assigns the file variable to reference the output of the open() function

.read()

Converts files into strings; returns the content of an open file as a string by default

with open("login_attempts.txt", "r") as file:
file_text = file.read()

Converts the file object referenced in the file variable into a string and then
stores this string in the file_text variable

.write()

Writes string data to a specified file

with open("access_log.txt", "a") as file:
file.write("jrafael")

Writes the string "jrafael" to the "access_log.txt" file; because the second
argument in the call to the open() function is "a", this string is appended to
the end of the file

Parsing

The following methods are useful when parsing data.

.split()

Converts a string into a list; separates the string based on the character that is passed
in as an argument; if an argument is not passed in, it will separate the string each time
it encounters whitespace characters such as a space or return

approved_users = "elarson,bmoreno,tshah".split(",")

Converts the string "elarson,bmoreno,tshah" into the list
["elarson","bmoreno","tshah"] by splitting the string into a separate list
element at each occurrence of the "," character

removed_users = "wjaffrey jsoto abernard".split()

Converts the string "wjaffrey jsoto abernard" into the list
["wjaffrey","jsoto","abernard"] by splitting the string into a separate
list element at each space

.join()

Concatenates the elements of an iterable into a string; takes the iterable to be
concatenated as an argument; is appended to a character that will separate each
element once they are joined into a string

approved_users = ",".join(["elarson", "bmoreno", "tshah"])

Concatenates the elements of the list ["elarson","bmoreno","tshah"]
into the string "elarson,bmoreno,tshah" , separating each element with
the "," character within the string

