
Exemplar_Validate and clean your data

January 21, 2024

1 Exemplar: Validate and clean your data

1.1 Introduction

In this activity, you will use input validation and label encoding to prepare a dataset for analysis.
These are fundamental techniques used in all types of data analysis, from simple linear regression
to complex neural networks.

In this activity, you are a data professional at an investment firm that is attempting to invest in
private companies with a valuation of at least $1 billion. These are often known as “unicorns.”
Your client wants to develop a better understanding of unicorns, with the hope they can be early
investors in future highly successful companies. They are particularly interested in the investment
strategies of the three top unicorn investors: Sequoia Capital, Tiger Global Management, and
Accel.

1.2 Step 1: Imports

Import relevant Python libraries and packages: numpy, pandas, seaborn, and pyplot from
matplotlib.

[1]: # Import libraries and packages.

YOUR CODE HERE

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

1.2.1 Load the dataset

The data contains details about unicorn companies, such as when they were founded,
when they achieved unicorn status, and their current valuation. Load the dataset
Modified_Unicorn_Companies.csv as companies and display the first five rows. The variables
in the dataset have been adjusted to suit the objectives of this lab, so they may be different from
similar data used in prior labs.

1

[2]: # Run this cell so pandas displays all columns
pd.set_option('display.max_columns', None)

[3]: companies = pd.read_csv('Modified_Unicorn_Companies.csv')

Display the first five rows.

YOUR CODE HERE
companies.head()

[3]: Company Valuation Date Joined Industry \
0 Bytedance 180 2017-04-07 Artificial intelligence
1 SpaceX 100 2012-12-01 Other
2 SHEIN 100 2018-07-03 E-commerce & direct-to-consumer
3 Stripe 95 2014-01-23 FinTech
4 Klarna 46 2011-12-12 Fintech

City Country/Region Continent Year Founded Funding \
0 Beijing China Asia 2012 $8B
1 Hawthorne United States North America 2002 $7B
2 Shenzhen China Asia 2008 $2B
3 San Francisco United States North America 2010 $2B
4 Stockholm Sweden Europe 2005 $4B

Select Investors
0 Sequoia Capital China, SIG Asia Investments, S…
1 Founders Fund, Draper Fisher Jurvetson, Rothen…
2 Tiger Global Management, Sequoia Capital China…
3 Khosla Ventures, LowercaseCapital, capitalG
4 Institutional Venture Partners, Sequoia Capita…

1.3 Step 2: Data cleaning

Begin by displaying the data types of the columns in companies.

[4]: # Display the data types of the columns.

YOUR CODE HERE
companies.dtypes

[4]: Company object
Valuation int64
Date Joined object
Industry object
City object
Country/Region object

2

Continent object
Year Founded int64
Funding object
Select Investors object
dtype: object

Hint 1

Review what you have learned about exploratory data analysis in Python.

Hint 2

There is a pandas DataFrame attribute that displays the data types of the columns in the specified
DataFrame.

Hint 3

The pandas DataFrame dtypes attribute will be helpful.

1.3.1 Modify the data types

Notice that the data type of the Date Joined column is an object—in this case, a string. Convert
this column to datetime to make it more usable.

[5]: # Apply necessary datatype conversions.

YOUR CODE HERE
companies['Date Joined'] = pd.to_datetime(companies['Date Joined'])

1.3.2 Create a new column

Add a column called Years To Unicorn, which is the number of years between when the company
was founded and when it became a unicorn.

[6]: # Create the column Years To Unicorn.

YOUR CODE HERE
companies['Years To Unicorn'] = companies['Date Joined'].dt.year -␣
↪→companies['Year Founded']

Hint 1

Extract just the year from the Date Joined column.

Hint 2

Use dt.year to access the year of a datetime object.

Hint 3

Subtract the Year Founded from the Date Joined year, and save it to a new column called Years
To Unicorn.

3

Ensure you’re properly extracting just the year (as an integer) from Date Joined.

QUESTION: Why might your client be interested in how quickly a company achieved
unicorn status?

Learning how quickly a company achieves unicorn status may reveal certain trends or commonali-
ties. Your client could leverage this information to find future companies to invest in.

1.3.3 Input validation

The data has some issues with bad data, duplicate rows, and inconsistent Industry labels.

Follow the steps below to identify and correct each of these issues.

Correcting bad data Get descriptive statistics for the Years To Unicorn column.

[7]: companies['Years To Unicorn'].describe()

[7]: count 1074.000000
mean 7.013035
std 5.331842
min -3.000000
25% 4.000000
50% 6.000000
75% 9.000000
max 98.000000
Name: Years To Unicorn, dtype: float64

Hint 1

Use the describe() method on the series. Considering the results, does anything seem problematic?

Hint 2

A company cannot reach unicorn status before it is founded. In other words, Years to Unicorn
cannot be less than 0.

Hint 3

Using the describe() method on the Years To Unicorn series shows that the minimum value is
-3. Since there cannot be negative time, this value and possibly others are problematic.

Isolate all rows where the Years To Unicorn column contains a negative value.

[8]: # Isolate any rows where `Years To Unicorn` is negative

YOUR CODE HERE
companies[companies['Years To Unicorn'] < 0]

[8]: Company Valuation Date Joined Industry City \
527 InVision 2 2017-11-01 Internet software & services New York

4

Country/Region Continent Year Founded Funding \
527 United States North America 2020 $349M

Select Investors Years To Unicorn
527 FirstMark Capital, Tiger Global Management, IC… -3

Question: How many rows have negative values in the Years To Unicorn column, and
what companies are they for?

• There is a single row that has a negative value in the Years To Unicorn column. The
company represented in this row is InVision.

An internet search reveals that InVision was founded in 2011. Replace the value at Year Founded
with 2011 for InVision’s row.

[9]: # Replace InVision's `Year Founded` value with 2011

YOUR CODE HERE
companies.loc[companies['Company']=='InVision', 'Year Founded'] = 2011

Verify the change was made properly

YOUR CODE HERE
companies[companies['Company']=='InVision']

[9]: Company Valuation Date Joined Industry City \
527 InVision 2 2017-11-01 Internet software & services New York

Country/Region Continent Year Founded Funding \
527 United States North America 2011 $349M

Select Investors Years To Unicorn
527 FirstMark Capital, Tiger Global Management, IC… -3

Hint 1

To overwrite data in a dataframe in a situation like this, you should use loc[] or iloc[] selection
statements. Otherwise, you might overwrite to a view of the dataframe, which means that you’re
not overwriting the data in the dataframe itself, and the change will not take permanent effect.

Hint 2

The following code will not work:

companies[companies[‘Company’]==‘InVision’][‘Year Founded’] = 2011

You must use either loc[] or iloc[].

Now, recalculate all the values in the Years To Unicorn column to remove the negative value for
InVision. Verify that there are no more negative values afterwards.

5

[10]: # Recalculate all values in the `Years To Unicorn` column

YOUR CODE HERE
companies['Years To Unicorn'] = companies['Date Joined'].dt.year -␣
↪→companies['Year Founded']

Verify that there are no more negative values in the column

YOUR CODE HERE
companies['Years To Unicorn'].describe()

[10]: count 1074.000000
mean 7.021415
std 5.323155
min 0.000000
25% 4.000000
50% 6.000000
75% 9.000000
max 98.000000
Name: Years To Unicorn, dtype: float64

Issues with Industry labels The company provided you with the following list of industry
labels to identify in the data for Industry.

Note: Any labels in the Industry column that are not in industry_list are misspellings.

[11]: # List provided by the company of the expected industry labels in the data
industry_list = ['Artificial intelligence', 'Other','E-commerce &␣
↪→direct-to-consumer', 'Fintech',\

'Internet software & services','Supply chain, logistics, & delivery',␣
↪→'Consumer & retail',\

'Data management & analytics', 'Edtech', 'Health', 'Hardware','Auto &␣
↪→transportation', \

'Travel', 'Cybersecurity','Mobile & telecommunications']

First, check if there are values in the Industry column that are not in industry_list. If so, what
are they?

[12]: # Check which values are in `Industry` but not in `industry_list`

YOUR CODE HERE
set(companies['Industry']) - set(industry_list)

[12]: {'Artificial Intelligence', 'Data management and analytics', 'FinTech'}

HINT 1

6

There are many ways to do this. One approach is to consider what data type reduces iterable
sequences to their unique elements and allows you to compare membership.

HINT 2

A set is a data type that consists of unique elements and supports membership testing with other
sets.

HINT 3

Set A – Set B will result in all the elements that are in Set A but not in Set B. Convert
industry_list to a set and subtract it from the set of the values in the Industry series.

Question: Which values currently exist in the Industry column that are not in
industry_list?

• 'Artificial Intelligence', 'Data management and analytics', and 'FinTech' are
misspellings that are currently in the Industry column.

Now, correct the bad entries in the Industry column by replacing them with an approved string
from industry_list. To do this, use the replace() Series method on the Industry series. When
you pass a dictionary to the method, it will replace the data in the series where that data matches
the dictionary’s keys. The values that get imputed are the values of the dictionary. If a value is
not specified in the dictionary, the series’ original value is retained.

Example:

[IN]: column_a = pd.Series(['A', 'B', 'C', 'D'])
column_a

[OUT]: 0 A
1 B
2 C
3 D
dtype: object

[IN]: replacement_dict = {'A':'z', 'B':'y', 'C':'x'}
column_a = column_a.replace(replacement_dict)
column_a

[OUT]: 0 z
1 y
2 x
3 D
dtype: object

1. Create a dictionary called replacement_dict whose keys are the incorrect spellings in the
Industry series and whose values are the correct spelling, as indicated in industry_list.

2. Call the replace() method on the Industry series and pass to it replacement_dict as its
argument. Reassign the result back to the Industry column.

3. Verify that there are no longer any elements in Industry that are not in industry_list.

7

https://pandas.pydata.org/docs/reference/api/pandas.Series.replace.html

[13]: # 1. Create `replacement_dict`

YOUR CODE HERE
replacement_dict = {'Artificial Intelligence': 'Artificial intelligence',

'Data management and analytics': 'Data management &␣
↪→analytics',

'FinTech': 'Fintech'
}

2. Replace the incorrect values in the `Industry` column

YOUR CODE HERE
companies['Industry'] = companies['Industry'].replace(replacement_dict)

3. Verify that there are no longer any elements in `Industry` that are not in␣
↪→`industry_list`

YOUR CODE HERE
set(companies['Industry']) - set(industry_list)

[13]: set()

Hint 1

Refer to the example provided for how to use the replace() Series method.

Hint 2

When you define the replacement_dict dictionary, the misspellings should be the keys and the
correct spellings should be the values.

Hint 3

When you call replace() on the Industry series and pass to it the replacement_dict dictionary
as an argument, you must reassign the result back to companies['Industry'] for the change to
take effect.

Handling duplicate rows The business mentioned that no company should appear in the data
more than once.

Verify that this is indeed the case, and if not, clean the data so each company appears only once.

Begin by checking which, if any, companies are duplicated. Filter the data to return all occurrences
of those duplicated companies.

[14]: # Isolate rows of all companies that have duplicates

YOUR CODE HERE
companies[companies.duplicated(subset=['Company'], keep=False)]

8

[14]: Company Valuation Date Joined Industry City \
385 BrewDog 2 2017-04-10 Consumer & retail Aberdeen
386 BrewDog 2 2017-04-10 Consumer & retail Aberdeen
510 ZocDoc 2 2015-08-20 Health New York
511 ZocDoc 2 2015-08-20 Health NaN
1031 SoundHound 1 2018-05-03 Artificial intelligence Santa Clara
1032 SoundHound 1 2018-05-03 Other Santa Clara

Country/Region Continent Year Founded Funding \
385 United Kingdom Europe 2007 $233M
386 UnitedKingdom Europe 2007 $233M
510 United States North America 2007 $374M
511 United States North America 2007 $374M
1031 United States North America 2005 $215M
1032 United States North America 2005 $215M

Select Investors Years To Unicorn
385 TSG Consumer Partners, Crowdcube 10
386 TSG Consumer Partners 10
510 Founders Fund, Khosla Ventures, Goldman Sachs 8
511 Founders Fund 8
1031 Tencent Holdings, Walden Venture Capital, Glob… 13
1032 Tencent Holdings 13

Hint 1

Check for duplicated values specifically in the Company column, not entire rows that are duplicated.

Hint 2

The pandas duplicated() DataFrame method can indentify duplicated rows. Apply it to the
Company column in companies to find which companies appear more than once.

Hint 3

• To specify that you want to check for duplicates only in the Company column, indicate this
with the subset parameter.

• To return all occurrences of duplicates, set the keep parameter to False.

Question: Do these duplicated companies seem like legitimate data points, or are they
problematic data?

• The duplicated companies are not legitimate because they are clearly not different companies
with the same name. They are the same company represented twice with minor variation.

Keep the first occurrence of each duplicate company and drop the subsequent rows that are copies.

[15]: # Drop rows of duplicate companies after their first occurrence

YOUR CODE HERE
companies = companies.drop_duplicates(subset=['Company'], keep='first')

9

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.duplicated.html#pandas.DataFrame.duplicated

Hint 1

Use the drop_duplicates() DataFrame method.

Hint 2

Make sure to subset Company and reassign the results back to the companies dataframe for the
changes to take effect.

Question: Why is it important to perform input validation?

Input validation is an essential practice for ensuring data is complete, error-free, and high quality.
A low-quality dataset may lend itself to an analysis that is incorrect or misleading.

Question: What steps did you take to perform input validation for this dataset?

The input validation steps for this lab included:

• Fixing incorrect values
• Correcting inconsistencies in the data
• Removing duplicate data

1.3.4 Convert numerical data to categorical data

Sometimes, you’ll want to simplify a numeric column by converting it to a categorical column. To
do this, one common approach is to break the range of possible values into a defined number of
equally sized bins and assign each bin a name. In the next step, you’ll practice this process.

Create a High Valuation column The data in the Valuation column represents how much
money (in billions, USD) each company is valued at. Use the Valuation column to create a new
column called High Valuation. For each company, the value in this column should be low if the
company is in the bottom 50% of company valuations and high if the company is in the top 50%.

[16]: # Create new `High Valuation` column

YOUR CODE HERE

Use qcut to divide Valuation into 'high' and 'low' Valuation groups
companies['High Valuation'] = pd.qcut(companies['Valuation'], 2, labels =␣
↪→['low', 'high'])

Hint 1

There are multiple ways to complete this task. Review what you’ve learned about organizing data
into equal quantiles.

Hint 2

Consider using the pandas qcut() function.

Hint 3

10

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop_duplicates.html
https://pandas.pydata.org/docs/reference/api/pandas.qcut.html

Use pandas qcut() to divide the data into two equal-sized quantile buckets. Use the labels
parameter to define the output labels. The values you give for labels will be the values that are
inserted into the new column.

1.3.5 Convert categorical data to numerical data

Three common methods for changing categorical data to numerical are:

1. Label encoding: order matters (ordinal numeric labels)
2. Label encoding: order doesn’t matter (nominal numeric labels)
3. Dummy encoding: order doesn’t matter (creation of binary columns for each possible category

contained in the variable)

The decision on which method to use depends on the context and must be made on a case-to-case
basis. However, a distinction is typically made between categorical variables with equal weight
given to all possible categories vs. variables with a hierarchical structure of importance to their
possible categories.

For example, a variable called subject might have possible values of history, mathematics,
literature. In this case, each subject might be nominal—given the same level of importance.
However, you might have another variable called class, whose possible values are freshman,
sophomore, junior, senior. In this case, the class variable is ordinal—its values have an or-
dered, hierarchical structure of importance.

Machine learning models typically need all data to be numeric, and they generally use ordinal label
encoding (method 1) and dummy encoding (method 3).

In the next steps, you’ll convert the following variables: Continent, Country/Region, and
Industry, each using a different approach.

1.3.6 Convert Continent to numeric

For the purposes of this exercise, suppose that the investment group has specified that they want
to give more weight to continents with fewer unicorn companies because they believe this could
indicate unrealized market potential.

Question: Which type of variable would this make the Continent variable in terms of
how it would be converted to a numeric data type?

• This would make Continent an ordinal variable, since more importance is placed on conti-
nents with fewer unicorn companies. There is a hierarchy of importance.

Rank the continents in descending order from the greatest number of unicorn companies to the
least.

[17]: # Rank the continents by number of unicorn companies

YOUR CODE HERE
companies['Continent'].value_counts()

11

[17]: North America 586
Asia 310
Europe 143
South America 21
Oceania 8
Africa 3
Name: Continent, dtype: int64

Hint

Use the value_counts() method on the Continent series.

Now, create a new column called Continent Number that represents the Continent column con-
verted to numeric in the order of their number of unicorn companies, where North America is
encoded as 1, through Africa, encoded as 6.

[18]: # Create numeric `Continent Number` column

YOUR CODE HERE
continent_dict = {'North America': 1,

'Asia': 2,
'Europe': 3,
'South America': 4,
'Oceania': 5,
'Africa': 6

}
companies['Continent Number'] = companies['Continent'].replace(continent_dict)
companies.head()

[18]: Company Valuation Date Joined Industry \
0 Bytedance 180 2017-04-07 Artificial intelligence
1 SpaceX 100 2012-12-01 Other
2 SHEIN 100 2018-07-03 E-commerce & direct-to-consumer
3 Stripe 95 2014-01-23 Fintech
4 Klarna 46 2011-12-12 Fintech

City Country/Region Continent Year Founded Funding \
0 Beijing China Asia 2012 $8B
1 Hawthorne United States North America 2002 $7B
2 Shenzhen China Asia 2008 $2B
3 San Francisco United States North America 2010 $2B
4 Stockholm Sweden Europe 2005 $4B

Select Investors Years To Unicorn \
0 Sequoia Capital China, SIG Asia Investments, S… 5
1 Founders Fund, Draper Fisher Jurvetson, Rothen… 10
2 Tiger Global Management, Sequoia Capital China… 10
3 Khosla Ventures, LowercaseCapital, capitalG 4

12

4 Institutional Venture Partners, Sequoia Capita… 6

High Valuation Continent Number
0 high 2
1 high 1
2 high 2
3 high 1
4 high 3

Hint

Create a mapping dictionary and use the replace() method on the Category column. Refer to
the example provided above for more information about replace().

1.3.7 Convert Country/Region to numeric

Now, suppose that within a given continent, each company’s Country/Region is given equal impor-
tance. For analytical purposes, you want to convert the values in this column to numeric without
creating a large number of dummy columns. Use label encoding of this nominal categorical variable
to create a new column called Country/Region Numeric, wherein each unique Country/Region is
assigned its own number.

[19]: # Create `Country/Region Numeric` column

YOUR CODE HERE

Create numeric categories for Country/Region
companies['Country/Region Numeric'] = companies['Country/Region'].
↪→astype('category').cat.codes

Hint 1

Review what you have learned about converting a variable with a string/object data type to a
category.

Hint 2

To use label encoding, apply .astype('category').cat.codes to the Country/Region in
companies.

1.3.8 Convert Industry to numeric

Finally, create dummy variables for the values in the Industry column.

[20]: # Convert `Industry` to numeric data

YOUR CODE HERE

13

Create dummy variables with Industry values
industry_encoded = pd.get_dummies(companies['Industry'])

Combine `companies` DataFrame with new dummy Industry columns
companies = pd.concat([companies, industry_encoded], axis=1)

Display the first few rows of companies

[21]: companies.head()

[21]: Company Valuation Date Joined Industry \
0 Bytedance 180 2017-04-07 Artificial intelligence
1 SpaceX 100 2012-12-01 Other
2 SHEIN 100 2018-07-03 E-commerce & direct-to-consumer
3 Stripe 95 2014-01-23 Fintech
4 Klarna 46 2011-12-12 Fintech

City Country/Region Continent Year Founded Funding \
0 Beijing China Asia 2012 $8B
1 Hawthorne United States North America 2002 $7B
2 Shenzhen China Asia 2008 $2B
3 San Francisco United States North America 2010 $2B
4 Stockholm Sweden Europe 2005 $4B

Select Investors Years To Unicorn \
0 Sequoia Capital China, SIG Asia Investments, S… 5
1 Founders Fund, Draper Fisher Jurvetson, Rothen… 10
2 Tiger Global Management, Sequoia Capital China… 10
3 Khosla Ventures, LowercaseCapital, capitalG 4
4 Institutional Venture Partners, Sequoia Capita… 6

High Valuation Continent Number Country/Region Numeric \
0 high 2 9
1 high 1 44
2 high 2 9
3 high 1 44
4 high 3 38

Artificial intelligence Auto & transportation Consumer & retail \
0 1 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

Cybersecurity Data management & analytics \
0 0 0

14

1 0 0
2 0 0
3 0 0
4 0 0

E-commerce & direct-to-consumer Edtech Fintech Hardware Health \
0 0 0 0 0 0
1 0 0 0 0 0
2 1 0 0 0 0
3 0 0 1 0 0
4 0 0 1 0 0

Internet software & services Mobile & telecommunications Other \
0 0 0 0
1 0 0 1
2 0 0 0
3 0 0 0
4 0 0 0

Supply chain, logistics, & delivery Travel
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0

Hint 1

Consider using pd.get_dummies on the specified column.

Hint 2

When you call pd.get_dummies() on a specified series, it will return a dataframe consisting of each
possible category contained in the series represented as its own binary column. You’ll then have to
combine this new dataframe of binary columns with the existing companies dataframe.

Hint 3

You can use pd.concat([col_a, col_b]) to combine the two dataframes. Remember to specify
the correct axis of concatenation and to reassign the result back to the companies dataframe.

Question: Which categorical encoding approach did you use for each variable? Why?

• Continent - Ordinal label encoding was used because there was a hierarchical order to the
categories.

• Country/Region - Nominal label encoding was used because there was not a hierarchical
order the categories.

• Industry - Dummy encoding was used because there were not many different categories
represented and they were all equally important.

Question: How does label encoding change the data?

15

Label encoding changes the data by assigning each category a unique number instead of a qualitative
value.

Question: What are the benefits of label encoding?

Label encoding is useful in machine learning models, because many types of machine learning
require all variables to be of a numeric data type.

Question: What are the disadvantages of label encoding?

Label encoding may make it more difficult to directly interpet what a column value represents.
Further, it may introduce unintended relationships between the categorical data in a dataset.

1.4 Conclusion

What are some key takeaways that you learned during this lab?

• Input validation is essential for ensuring data is high quality and error-free.
• In practice, input validation requires trial and error to identify issues and determine the best

way to fix them.
• There are benefits and disadvantages to both label encoding and dummy/one-hot encoding.
• The decision to use label encoding versus dummy/one-hot encoding needs to be made on a

case-by-case basis.

Reference

Bhat, M.A. Unicorn Companies

Congratulations! You’ve completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

16

https://www.kaggle.com/datasets/mysarahmadbhat/unicorn-companies

	Exemplar: Validate and clean your data
	Introduction
	Step 1: Imports
	Load the dataset

	Step 2: Data cleaning
	Modify the data types
	Create a new column
	Input validation
	Convert numerical data to categorical data
	Convert categorical data to numerical data
	Convert Continent to numeric
	Convert Country/Region to numeric
	Convert Industry to numeric

	Conclusion

