
Exemplar_Develop an algorithm

January 15, 2024

1 Exemplar: Develop an algorithm

1.1 Introduction

An algorithm is a set of steps that can be used to solve a problem. Security analysts develop
algorithms to provide the solutions that they need for their work. For example, an analyst may
work with users who bring them devices. The analyst may need an algorithm that first checks if a
user is approved to access the system and then checks if the device that they have brought is the
one assigned to them.

In this lab, you’ll develop an algorithm in Python that automates this process.

Tips for completing this lab

As you navigate this lab, keep the following tips in mind:

• ### YOUR CODE HERE ### indicates where you should write code. Be sure to replace this
with your own code before running the code cell.

• Feel free to open the hints for additional guidance as you work on each task.
• To enter your answer to a question, double-click the markdown cell to edit. Be sure to replace

the “[Double-click to enter your responses here.]” with your own answer.
• You can save your work manually by clicking File and then Save in the menu bar at the top

of the notebook.
• You can download your work locally by clicking File and then Download and then specifying

your preferred file format in the menu bar at the top of the notebook.

1.2 Scenario

In this lab, you’re working as a security analyst and you’re responsible for developing an algorithm
that connects users to their assigned devices. You’ll write code that indicates if a user is approved
on the system and has brought their assigned device to the security team.

1.3 Task 1

You’ll work with a list of approved usernames along with a list of the approved devices assigned
to these users. The elements of the two lists are synchronized. In other words, the user at index 0
in approved_users uses the device at index 0 in approved_devices. Later, this will allow you to
verify if the username and device ID entered by a user correspond to each other.

1

First, to explore how indices in lists work, run the following code cell as is and observe the output.
Then, replace each 0 with another index and run the cell to observe what happens.

[1]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "tshah", "sgilmore", "eraab"]

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "2ye3lzg", "4n482ts", "a307vir"]

Display the element at the specified index in `approved_users`

print(approved_users[0])

Display the element at the specified index in `approved_devices`

print(approved_devices[0])

elarson
8rp2k75

Question 1 What did you observe about the output when approved_users[0] is dis-
played and when approved_devices[0] is displayed? What happens when you replace
each 0 with another index?

When approved_users[0] is displayed, the output is the first approved username from
approved_users. When approved_devices[0] is displayed, the output is the first device ID
from approved_devices. When you replace each 0 with another index, the output is the element
at that index in approved_users, followed by the element at that index in approved_devices.
For example, if you replace each 0 with 2, the output is the element at index 2 in approved_users,
followed by the element at index 2 in approved_devices.

1.4 Task 2

There’s a new employee joining the organization, and they need to be provided with a username
and device ID. In the following code cell, you are given a username and device ID of this new user,
stored in the variables new_user and new_device, respectively. Use the .append() method to add
these variables to the approved_users and approved_devices respectively. Afterwards, display
the approved_users and approved_devices variables to confirm the added information. Be sure
to replace each ### YOUR CODE HERE ### with your own code before you run the following cell.

[2]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "tshah", "sgilmore", "eraab"]

2

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "2ye3lzg", "4n482ts", "a307vir"]

Assign `new_user` to the username of a new approved user

new_user = "gesparza"

Assign `new_device` to the device ID of the new approved user

new_device = "3rcv4w6"

Add that user's username and device ID to `approved_users` and␣
↪→`approved_devices` respectively

approved_users.append(new_user)
approved_devices.append(new_device)

Display the contents of `approved_users`

print(approved_users)

Diplay the contents of `approved_devices`

print(approved_devices)

['elarson', 'bmoreno', 'tshah', 'sgilmore', 'eraab', 'gesparza']
['8rp2k75', 'hl0s5o1', '2ye3lzg', '4n482ts', 'a307vir', '3rcv4w6']

Hint 1

Use the .append() method to add new_user to approved_users.

Use the .append() method to add new_device to approved_devices.

Hint 2

Use the print() function to display the contents of approved_users.

Use the print() function to display the contents of approved_devices.

Question 2 After the new approved user is added, what did you observe about the
output when approved_users is displayed and when approved_devices is displayed?

After the new approved user is added, their username is at the end of the approved_users and
their device ID is at the end of the approved_devices.

3

1.5 Task 3

An employee has left the team and should no longer have access to the system. In the following code
cell, you are given the username and device ID of the user to be removed, stored in the variables
removed_user and removed_device respectively. Use the .remove() method to remove each of
these elements from the corresponding list. Afterwards, display both the approved_users and the
approved_devices variables to view the removed users. Run the code and observe the results. Be
sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[3]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "tshah", "sgilmore", "eraab",␣
↪→"gesparza"]

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "2ye3lzg", "4n482ts", "a307vir",␣
↪→"3rcv4w6"]

Assign `removed_user` to the username of the employee who has left the team

removed_user = "tshah"

Assign `removed_device` to the device ID of the employee who has left the team

removed_device = "2ye3lzg"

Remove that employee's username and device ID from `approved_users` and␣
↪→`approved_devices` respectively

approved_users.remove(removed_user)
approved_devices.remove(removed_device)

Display `approved_users`

print(approved_users)

Diplay `approved_devices`

print(approved_devices)

['elarson', 'bmoreno', 'sgilmore', 'eraab', 'gesparza']
['8rp2k75', 'hl0s5o1', '4n482ts', 'a307vir', '3rcv4w6']

Hint 1

Use the .remove() method to remove removed_user from approved_users.

4

Use the .remove() method to remove removed_device from approved_devices.

Hint 2

Use the print() function to display the contents of approved_users.

Use the print() function to display the contents of approved_devices.

Question 3 After the user who left the team is removed, what did you observe about
the output when approved_users is displayed and when approved_devices is displayed?

After the user who left the team is removed, their username is no longer part of the approved_users
and their device ID is no longer part of the approved_devices.

1.6 Task 4

As part of verifying a user’s identity in the system, you’ll need to check if the user is one of the
approved users. Write a conditional statement that verifies if a given username is an element of
the list of approved usernames. If it is, display "The user ______ is approved to access the
system.". Otherwise, display "The user ______ is not approved to access the system.".
Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[4]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "sgilmore", "eraab", "gesparza"]

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "4n482ts", "a307vir", "3rcv4w6"]

Assign `username` to a username

username = "sgilmore"

Conditional statement
If `username` belongs to `approved_users`, then display "The user ______ is␣
↪→approved to access the system."

Otherwise display "The user ______ is not approved to access the system."
if username in approved_users:

print("The username", username, "is approved to access the system.")
else:

print("The username", username, "is not approved to access the system.")

The username sgilmore is approved to access the system.

Hint 1

5

In the if condition, be sure to check if username belongs to approved_users.

Hint 2

After the if statement, use the else keyword to create an else statement that handles the case
when username is not part of the approved_users.

Hint 3

Inside the else statement, use the print() function to display the message "The user ______
is not approved to access the system.".

Refer to the print() function call in the if statement and observe how commas separate a string
containing the first part of the message, the username variable, and another string containing the
second part of the message.

Question 4 What message do you observe in the output when username is "sgilmore"?

When username is "sgilmore", the outputted message reads "The username sgilmore is
approved to access the system." since "sgilmore" is an element of the approved_users.

1.7 Task 5

The next part of the algorithm uses the .index() method to find the index of username in the
approved_list and store that index in a variable named ind.

When used on a list, the .index() method will return the position of the given value in the list.

Add a statement to display ind in the following code cell to explore the value it contains. Be sure
to replace the ### YOUR CODE HERE ### with your own code before you run the following cell.

[5]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "sgilmore", "eraab", "gesparza"]

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "4n482ts", "a307vir", "3rcv4w6"]

Assign `username` to a username

username = "sgilmore"

Assign `ind` to the index of `username` in `approved_users`

ind = approved_users.index(username)

Display the value of `ind`

6

print(ind)

2

Hint 1

Use the print() function to display the value of ind.

Question 5 What do you observe from the output when username is "sgilmore"?

When username is "sgilmore", the output is 2, which indicates that the index value of
"sgilmore" is 2 in the approved_users. In other words, "sgilmore" is the third element in
the approved_users. Indexing in Python starts at 0.

1.8 Task 6

This task will allow you to build your understanding of list operations for the algorithm that you’ll
eventually build. It will demonstrate how you can find an index in one list and then use this index
to display connected information in another list. First, use the .index() method again to find the
index of username in the approved_users and store that in a variable named ind. Then, connect
ind to the approved_devices and display the device ID located at the index ind. Afterwards, run
the cell to observe the result. Be sure to replace each ### YOUR CODE HERE ### with your own
code before you run the following cell.

[6]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "sgilmore", "eraab", "gesparza"]

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "4n482ts", "a307vir", "3rcv4w6"]

Assign `username` to a username

username = "sgilmore"

Assign `ind` to the index of `username` in `approved_users`

ind = approved_users.index(username)

Display the device ID at the index that matches the value of `ind` in␣
↪→`approved_devices`

print(approved_devices[ind])

4n482ts

7

Hint 1

Use the .index() method to get the index value of the username in the approved_users. Assign
ind to the result.

Hint 2

To display the correct device ID from approved_devices, use ind as the index. Place ind inside
the square brackets to extract the correct element from approved_devices.

Question 6 What do you observe from the output when username is "sgilmore"?

When username is "sgilmore", the output is 4n482ts, which is the device ID that corresponds to
"sgilmore". The third approved username in the approved_users is "sgilmore", and similarly
the third device ID in the approved_devices is "4n482ts".

1.9 Task 7

Your next step in creating the algorithm is to determine if a username and device ID correspond.
To do this, write a conditional that checks if the username is an element of the approved_devices
and if the device_id stored at the same index as username matches the device_id entered. You’ll
use the logical operator and to connect the two conditions. When both conditions evaluate to
True, display a message that the username is approved and another message that the user has their
assigned device. Be sure to replace each ### YOUR CODE HERE ### with your own code before you
run the following cell.

[7]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "sgilmore", "eraab", "gesparza"]

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "4n482ts", "a307vir", "3rcv4w6"]

Assign `username` to a username

username = "sgilmore"

Assign `device_id` to a device ID

device_id = "4n482ts"

Assign `ind` to the index of `username` in `approved_users`

ind = approved_users.index(username)

Conditional statement

8

If `username` belongs to `approved_users`, and if the device ID at `ind` in␣
↪→`approved_devices` matches `device_id`,

then display a message that the username is approved,
followed by a message that the user has the correct device

if username in approved_users and device_id == approved_devices[ind]:
print("The username", username, "is approved to access the system.")
print(device_id, "is the assigned device for", username)

The username sgilmore is approved to access the system.
4n482ts is the assigned device for sgilmore

Hint 1

After the logical operator and, write the second condition in the if statement using a comparison
operator to check whether the element at ind in approved_devices matches device_id.

Hint 2

Use the == comparison operator to check whether the element at ind in approved_devices matches
device_id.

Question 7 What do you observe from the output when username is "sgilmore" and
device_id is "4n482ts"?

When username is "sgilmore" and device_id is "4n482ts", the output consists of The
username sgilmore is approved to access the system. on the first line and 4n482ts is
the assigned device for sgilmore on the second line.

1.10 Task 8

It would also be helpful for users to receive messages when their username is not approved or their
device ID is incorrect.

Add to the code by writing an elif statement. This elif statement should run when the username
is part of the approved_users but the device_id doesn’t match the corresponding device ID in the
approved_devices. The statement should also display two messages conveying that information.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

(After you run the code once with a device_id of "4n482ts", you might want to explore what
happens if you assign a different value to device_id.)

[1]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "sgilmore", "eraab", "gesparza"]

9

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "4n482ts", "a307vir", "3rcv4w6"]

Assign `username` to a username

username = "sgilmore"

Assign `device_id` to a device ID

device_id = "4n482ts"

Assign `ind` to the index of `username` in `approved_users`

ind = approved_users.index(username)

If statement
If `username` belongs to `approved_users`, and if the element at `ind` in␣
↪→`approved_devices` matches `device_id`,

then display a message that the username is approved,
followed by a message that the user has the correct device

if username in approved_users and device_id == approved_devices[ind]:
print("The user", username, "is approved to access the system.")
print(device_id, "is the assigned device for", username)

Elif statement
Handles the case when `username` belongs to `approved_users` but element at␣
↪→`ind` in `approved_devices` does not match `device_id`,

and displays two messages accordingly

elif username in approved_users and device_id != approved_devices[ind]:
print("The user", username, "is approved to access the system, but",␣

↪→device_id, "is not their assigned device.")

The user sgilmore is approved to access the system.
4n482ts is the assigned device for sgilmore

Hint 1

In the elif statement, use the in operator to check whether username belongs to approved_users,
use a comparison operator to check whether the element at ind in approved_devices doesn’t match
device_id, and use a logical operator to connect these two conditions to check whether both of
them are met.

Hint 2

In the elif statement, use the in operator to check whether username belongs to approved_users,

10

use the != comparison operator to check whether the element at ind in approved_devices doesn’t
match device_id, and use the and logical operator to connect these two conditions to check whether
both of them are met.

Question 8 What do you observe from the output when username is "sgilmore" and
device_id is "4n482ts"?

When username is "sgilmore" and device_id is "4n482ts", the output consists of The
user sgilmore is approved to access the system. on the first line and 4n482ts is the
assigned device for sgilmore on the second line.

If username wasn’t in the approved_devices list, the output would be a message that the user is
not approved to access the system.

If username was in the approved_devices list but device_id didn’t correspond with username,
the output would be a message that the user is approved to access the system but the device ID is
not assigned to them.

1.11 Task 9

In this task, you’ll complete your algorithm by developing a function that uses some of the code
you’ve written in earlier tasks. This will automate the login process.

There are multiple ways to use conditionals to automate the login process. In the following code,
a nested conditional is used to achieve the goals of the algorithm. There is a conditional statement
inside of another conditional statement. The outer conditional handles the case when the username
is approved and the case when username is not approved. The inner conditional, which is placed
inside the first if statement, handles the case when the username is approved and the device_id
is correct, as well as the case when the username is approved and the device_id is incorrect.

To complete this task, you must define a function named login that takes in two parameters,
username and device_id. Afterwards, call the function and pass in different username and device
ID combinations to experiment and observe the function’s behavior. Be sure to replace the ###
YOUR CODE HERE ### with your own code before you run the following cell.

[9]: # Assign `approved_users` to a list of approved usernames

approved_users = ["elarson", "bmoreno", "sgilmore", "eraab", "gesparza"]

Assign `approved_devices` to a list of device IDs that correspond to the␣
↪→usernames in `approved_users`

approved_devices = ["8rp2k75", "hl0s5o1", "4n482ts", "a307vir", "3rcv4w6"]

Define a function named `login` that takes in two parameters, `username` and␣
↪→`device_id`

def login(username, device_id):

11

If `username` belongs to `approved_users`,

if username in approved_users:

then display "The user ______ is approved to access the system.",

print("The user", username, "is approved to access the system.")

assign `ind` to the index of `username` in `approved_users`,

ind = approved_users.index(username)

and execute the following conditional
If `device_id` matches the element at the index `ind` in␣

↪→`approved_devices`,

if device_id == approved_devices[ind]:

then display "______ is the assigned device for ______"

print(device_id, "is the assigned device for", username)

Otherwise,

else:

display "______ is not their assigned device"

print(device_id, "is not their assigned device.")

Otherwise (part of the outer conditional and handles the case when␣
↪→`username` does not belong to `approved_users`),

else:

Display "The user ______ is not approved to access the system."

print("The username", username, "is not approved to access the system.")

Call the function you just defined to experiment with different username and␣
↪→device_id combinations

login("bmoreno", "hl0s5o1")
login("elarson", "r2s5r9g")
login("abernard", "4n482ts")

The user bmoreno is approved to access the system.

12

hl0s5o1 is the assigned device for bmoreno
The user elarson is approved to access the system.
r2s5r9g is not their assigned device.
The username abernard is not approved to access the system.

Hint 1

Use the def keyword to start the function definition.

Hint 2

After the def keyword, specify the name of the function, followed by parantheses and a colon.
Inside the parantheses, specify the parameters that the function takes in.

To call the function, write the name of the function, followed by parantheses, and pass in the
username and device ID that you want to experiment with.

Hint 3

After the def keyword, write login(username, device_id): to complete the function definition
header.

To call the function, write login(), and pass in the username and device ID that you want to
experiment with, separated by a comma. Keep in mind that the arguments you pass in are string
data.

Question 9 After Python enters the inner conditional, what happens when the
device_id is correct, and what happens when the device_id is incorrect?

The following happens after Python enters the inner conditional:

When the device_id is correct, the inner if condition evaluates to True, and a message that the
device ID is assigned to the user is displayed.

When the device_id is incorrect, the inner if condition evaluates to False, Python enters the
else case, and a message that the device ID is not the user’s designed device is displayed.

1.12 Conclusion

What are your key takeaways from this lab?

• Indexing a list is similar to indexing a string. Index values start at 0.
• The .append() method helps you add new elements to the end of lists.
• The .remove() method helps you remove elements from lists.
• The .index() method can be used on different types of sequences. They can be used not

only with strings, but also with lists.
– With a list, the .index() method allows you to identify the position where a specified

element is located in that list.
• If two lists contain information that correspond to each other in a specific order, you can use

indices to pair elements from the lists together.
• Functions can be used to develop algorithms. When defining a function, you must specify the

parameters it takes in and the actions it should execute.

13

	Exemplar: Develop an algorithm
	Introduction
	Scenario
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Task 9
	Conclusion

