
Exemplar_Define and call a function

January 10, 2024

1 Exemplar: Define and call a function

1.1 Introduction

As a security analyst, when you’re writing out Python code to automate a certain task, you’ll often
find yourself needing to reuse the same block of code more than once. This is why functions are
important. You can call that function whenever you need the computer to execute those steps.
Python not only has built-in functions that have already been defined, but also provides the tools
for users to define their own functions. Security analysts often define and call functions in Python
to automate series of tasks.

In this lab, you’ll practice defining and calling functions in Python.

Tips for completing this lab

As you navigate this lab, keep the following tips in mind:

• ### YOUR CODE HERE ### indicates where you should write code. Be sure to replace this
with your own code before running the code cell.

• Feel free to open the hints for additional guidance as you work on each task.
• To enter your answer to a question, double-click the markdown cell to edit. Be sure to replace

the “[Double-click to enter your responses here.]” with your own answer.
• You can save your work manually by clicking File and then Save in the menu bar at the top

of the notebook.
• You can download your work locally by clicking File and then Download and then specifying

your preferred file format in the menu bar at the top of the notebook.

1.2 Scenario

Writing functions in Python is a useful skill in your work as a security analyst. In this lab, you’ll
define and a call a function that displays an alert about a potential security issue. Also, you’ll work
with a list of employee usernames, creating a function that converts the list into one string.

1.3 Task 1

The following code cell contains a user-defined function named alert().

For this task, analyze the function definition, and make note of your observations.

1

You won’t need to run the cell in order to answer the question that follows. But if you do run the
cell, note that it will not produce an output because the function is just being defined here.

[1]: # Define a function named `alert()`

def alert():
print("Potential security issue. Investigate further.")

Hint 1

When analyzing the function definition, make sure to observe the function body, which is the
indented block of code after the function header. The function body tells you what the function
does.

Question 1 Summarize what the user-defined function above does in your own words. Think
about what the output would be if this function were called.

The alert() function displays the string "Potential security issue. Investigate further."
to the screen. This function can be used to inform security analysts about potential security issues
in a system. If this function were called, the output would show Potential security issue.
Investigate further.. Recall that when a string is displayed, the quotes around the string do
not appear in the output.

1.4 Task 2

For this task, call the alert() function that was defined earlier and analyze the output.

Be sure to replace the ### YOUR CODE HERE ### with your own code before running the following
cell.

[2]: # Define a function named `alert()`

def alert():
print("Potential security issue. Investigate further.")

Call the `alert()` function

alert()

Potential security issue. Investigate further.

Hint 1

To call the function, write alert() after the function definition. Note that the function can be
called only after it’s defined.

Question 2 What are the advantages of placing this code in a function rather than running it
directly?

2

Placing the code in a function allows you to effeciently reuse the code. Whenever you need to
display the messages about a potential security issue and further investigation, you can just call
the alert() function. The alternative would be to write out that print() statement every time,
which would be tedious.

1.5 Task 3

Functions can include other components that you’ve already worked with. The following code cell
contains a variation of the alert() function that now uses a for loop to display the alert message
multiple times.

For this task, call the new alert() function and observe the output.

Be sure to replace the ### YOUR CODE HERE ### with your own code before running the following
cell.

[3]: # Define a function named `alert()`

def alert():
for i in range(3):

print("Potential security issue. Investigate further.")

Call the `alert()` function

alert()

Potential security issue. Investigate further.
Potential security issue. Investigate further.
Potential security issue. Investigate further.

Hint 1

To call the function, write alert() after the function definition. Note that the function can be
called only after it’s defined.

Question 3 How does the output above compare to the output from calling the previous version
of the alert() function? How are the two definitions of the function different?

The output shows Potential security issue. Investigate further. three times, each time
appearing on a new line. Meanwhile, the output from calling the previous version of alert()
shows the message only once. The difference in behavior is due to the for loop used in the second
version. This loop iterates over a range of numbers (specified by range(3)) and executes a print()
statement in each iteration. This print() statement is the same as the one in the previous function
definition.

1.6 Task 4

In the next part of your work, you’re going to work with a list of approved usernames, representing
users who can enter a system. You’ll be developing a function that helps you convert the list of

3

approved usernames into one big string. Structuring this data differently enables you to work with
it in different ways. For example, structuring the usernames as a list allows you to easily add or
remove a username from it. In contrast, structuring it as a string allows you to easily place its
contents into a text file.

For this task, start defining a function named list_to_string(). Write the function header.

Be sure to replace the ### YOUR CODE HERE ### with your own code. Note that running this cell
will produce an error since this cell will just contain the function header; you’ll write the function
body and complete the function definition in a later task.

[4]: # Define a function named `list_to_string()`

def list_to_string():

File "<ipython-input-4-f359e12ed06d>", line 3
def list_to_string():

^
SyntaxError: unexpected EOF while parsing

Hint 1

To write the function header, start with the def keyword, followed by the name of the function,
parentheses, and a colon.

1.7 Task 5

Now you’ll begin to develop the body of the list_to_string() function.

In the following code cell, you’re provided a list of approved usernames, stored in a variable named
username_list. Your task is to complete the body of the list_to_string() function. Recall that
the body of a function must be indented. To complete the function body, write a loop that iterates
through the elements of the username_list and displays each element. Then, call the function
and run the cell to observe what happens.

Be sure to replace each ### YOUR CODE HERE ### with your own code before running the following
cell.

[5]: # Define a function named `list_to_string()`

def list_to_string():

Store the list of approved usernames in a variable named `username_list`

username_list = ["elarson", "bmoreno", "tshah", "sgilmore", "eraab",␣
↪→"gesparza", "alevitsk", "wjaffrey"]

4

Write a for loop that iterates through the elements of `username_list` and␣
↪→displays each element

for i in username_list:
print(i)

Call the `list_to_string()` function

list_to_string()

elarson
bmoreno
tshah
sgilmore
eraab
gesparza
alevitsk
wjaffrey

Hint 1

The for loop in the body of the list_to_string() function must iterate through the elements of
username_list. So, use the username_list variable to complete the for loop condition.

Hint 2

In each iteration of the for loop, an element of username_list should be displayed. The loop
variable i represents each element of username_list. To complete the print() statement inside
the for loop, passi to the print() function call.

Hint 3

To call the function, write list_to_string() after the function definition. Recall that the function
can be called only after it’s defined.

Question 4 What do you observe from the output above?

The output shows each element from username_list on a new line.

1.8 Task 6

String concatenation is a powerful concept in coding. It allows you to combine multiple strings
together to form one large string, using the addition operator (+). Sometimes analysts need to merge
individual pieces of data into a single string value. In this task, you’ll use string concatenation to
modify how the list_to_string() function is defined.

In the following code cell, you’re provided a variable named sum_variable that initially contains
an empty string. Your task is to use string concatenation to combine the usernames from the
username_list and store the result in sum_variable.

5

In each iteration of the for loop, add the current element of username_list to sum_variable. At
the end of the function definition, write a print() statement to display the value of sum_variable
at that stage of the process. Then, run the cell to call the list_to_string() function and examine
its output.

Be sure to replace each ### YOUR CODE HERE ### with your own code before running the following
cell.

[6]: # Define a function named `list_to_string()`

def list_to_string():

Store the list of approved usernames in a variable named `username_list`

username_list = ["elarson", "bmoreno", "tshah", "sgilmore", "eraab",␣
↪→"gesparza", "alevitsk", "wjaffrey"]

Assign `sum_variable` to an empty string

sum_variable = ""

Write a for loop that iterates through the elements of `username_list` and␣
↪→displays each element

for i in username_list:
sum_variable = sum_variable + i

Display the value of `sum_variable`

print(sum_variable)

Call the `list_to_string()` function

list_to_string()

elarsonbmorenotshahsgilmoreeraabgesparzaalevitskwjaffrey

Hint 1

Inside the for loop, complete the line that updates the sum_variable in each iteration. The loop
variable i represents each element of username_list. Since you need to add the current element
to the current value of sum_variable, place i after the addition operator (+).

Hint 2

Use the print() function to display the value of sum_variable. Make sure to pass in sum_variable
to the call to print().

Question 5 What do you observe from the output above?

6

The output shows all the elements from username_list merged together in one line. In its current
format, the output is difficult to read. It’s difficult to decipher where one username ends and the
next begins.

1.9 Task 7

In this final task, you’ll modify the code you wrote previously to improve the readability of the
output.

This time, in the definition of the list_to_string() function, add a comma and a space (",
") after each username. This will prevent all the usernames from running into each other in the
output. Adding a comma helps clearly separate one username from the next in the output. Adding
a space following the comma as an additional separator between one username and the next makes
it easier to read the output. Then, call the function and run the cell to observe the output.

Be sure to replace each ### YOUR CODE HERE ### with your own code before running the following
cell.

[7]: # Define a function named `list_to_string()`

def list_to_string():

Store the list of approved usernames in a variable named `username_list`

username_list = ["elarson", "bmoreno", "tshah", "sgilmore", "eraab",␣
↪→"gesparza", "alevitsk", "wjaffrey"]

Assign `sum_variable` to an empty string

sum_variable = ""

Write a for loop that iterates through the elements of `username_list` and␣
↪→displays each element

for i in username_list:
sum_variable = sum_variable + i + ", "

Display the value of `sum_variable`

print(sum_variable)

Call the `list_to_string()` function

list_to_string()

elarson, bmoreno, tshah, sgilmore, eraab, gesparza, alevitsk, wjaffrey,

Hint 1

7

Inside the for loop, complete the line that updates the sum_variable in each iteration. The loop
variable i represents each element of username_list. After the current element is added to the
current value of sum_variable, add a string that contains a comma followed by a space.

To complete this step, place ", " after the last addition operator (+).

Hint 2

To call the function, write list_to_string() after the function definition. Note that the function
can be called only after it’s defined.

Question 6 What do you notice about the output from the function call this time?

The output shows all the elements from username_list in one line. This time, there’s a comma
and a space after each username. This format is much easier to read. It’s easier to distinguish one
username from the next.

1.10 Conclusion

What are your key takeaways from this lab?

• Python allows you to define and call functions that you create.
• The main components of a function definition header include the function header and the

function body.
– The function header includes the def keyword, followed by the name of the function,

followed by parantheses, followed by a colon.
– The function body includese an indented block of code that instructs the computer on

what to do when the function is called.
• String concatenation involves using the addition operator (+) to combine multiple strings

together.
– One use case for string concatenation is combining the strings from a list into one large

string.

8

	Exemplar: Define and call a function
	Introduction
	Scenario
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Conclusion

