
Exemplar_Create loops

January 8, 2024

1 Exemplar: Create loops

1.1 Introduction

As a security analyst, some of the measures you take to protect a system will involve repetition. As
an example, you might need to investigate multiple IP addresses that have attempted to connect
to the network. In Python, iterative statements can help automate repetitive processes like these
to make them more efficient.

In this lab, you will practice writing iterative statements in Python.

Tips for completing this lab

As you navigate this lab, keep the following tips in mind:

• ### YOUR CODE HERE ### indicates where you should write code. Be sure to replace that
with your own code before running the code cell.

• Feel free to open the hints for additional guidance as you work on each task.
• To enter your answer to a question, double-click the markdown cell to edit. Be sure to replace

the “[Double-click to enter your responses here.]” with your own answer.
• You can save your work manually by clicking File and then Save in the menu bar at the top

of the notebook.
• You can download your work locally by clicking File and then Download and then specifying

your preferred file format in the menu bar at the top of the notebook.

1.2 Scenario

You’re working as a security analyst, and you’re writing programs in Python to automate displaying
messages regarding network connection attempts, detecting IP addresses that are attempting to
access restricted data, and generating employee ID numbers for a Sales department.

1.3 Task 1

In this task, you’ll create a loop related to connecting to a network.

Write an iterative statement that displays Connection could not be established three times.
Use the for keyword, the range() function, and a loop variable of i. Be sure to replace the ###
YOUR CODE HERE ### with your own code before you run the following cell.

1

[1]: # Iterative statement using `for`, `range()`, and a loop variable of `i`
Display "Connection could not be established." three times

for i in range(3):
print("Connection could not be established.")

Connection could not be established.
Connection could not be established.
Connection could not be established.

Hint 1

Use i as the loop variable and then place the in operator after i.

Hint 2

After the in operator, pass in the appropriate number to the range() function so that it instructs
Python to repeat the specified action three times.

1.4 Task 2

The range() function can also take in a variable. To repeat a specified action a certain number of
times, you can first assign an integer value to a variable. Then, you can pass that variable into the
range() function within a for loop.

In your code that displays a network message connection, incorporate a variable called
connection_attempts. Assign the positive integer of your choice as the value of that variable
and fill in the missing variable in the iterative statement. Be sure to replace the ### YOUR CODE
HERE ### with your own code before you run the following cell. Test out the code with different
values for connection_attempts and observe what happens.

[2]: # Create a variable called `connection_attempts` that stores the number of␣
↪→times the user has tried to connect to the network

connection_attempts = 3

Iterative statement using `for`, `range()`, a loop variable of `i`, and␣
↪→`connection_attempts`

Display "Connection could not be established." as many times as specified by␣
↪→`connection_attempts`

for i in range(connection_attempts):
print("Connection could not be established")

Connection could not be established
Connection could not be established
Connection could not be established

Hint 1

2

Assign the connection_attempts variable to a number that represents how many times the user
will try to connect to the network.

Hint 2

Pass in the appropriate variable to the range() function so that it instructs Python to repeat the
specified action the specified number of times.

1.5 Task 3

This task can also be achieved with a while loop. Complete the while loop with the correct code
to instruct it to display "Connection could not be established." three times.

In this task, a for loop and a while loop will produce similar results, but each is based on a different
approach. (In other words, the underlying logic is different in each.) A for loop terminates after
a certain number of iterations have completed, whereas a while loop terminates once it reaches a
certain condition. In situations where you do not know how many times the specified action should
be repeated, while loops are most appropriate.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[3]: # Assign `connection_attempts` to an initial value of 0, to keep track of how␣
↪→many times the user has tried to connect to the network

connection_attempts = 0

Iterative statement using `while` and `connection_attempts`
Display "Connection could not be established." every iteration, until␣
↪→connection_attempts reaches a specified number

while connection_attempts < 3:
print("Connection could not be established")

Update `connection_attempts` (increment it by 1 at the end of each␣
↪→iteration)

connection_attempts = connection_attempts + 1

Connection could not be established
Connection could not be established
Connection could not be established

Hint 1

In the condition, use a comparison operator to check whether connection_attempts has reached
a specific number. This number represents the number of times the message will be displayed.

Hint 2

In the condition, use the < comparison operator to check whether connection_attempts is less
than a specific number. This number represents the number of times the message will be displayed.

3

Hint 3

Use the print() function to display the appropriate message to the user.

Question 1 What do you observe about the differences between the for loop and the
while loop that you wrote?

The messages outputted from both loops were identical. The logic is what differed between the two
loops. In the for loop, the loop variable i was automatically defined in the loop header, and it was
updated automatically in each iteration. In the while loop, the loop variable connection_attempts
had to be defined before the loop header, and it had to be explicitly updated inside the loop body.

1.6 Task 4

Now, you’ll move onto your next task. You’ll automate checking whether IP addresses are part of
an allow list. You will start with a list of IP addresses from which users have tried to log in, stored
in a variable called ip_addresses. Write a for loop that displays the elements of this list one at
a time. Use i as the loop variable in the for loop.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[4]: # Assign `ip_addresses` to a list of IP addresses from which users have tried␣
↪→to log in

ip_addresses = ["192.168.142.245", "192.168.109.50", "192.168.86.232", "192.168.
↪→131.147",

"192.168.205.12", "192.168.200.48"]

For loop that displays the elements of `ip_addresses` one at a time

for i in ip_addresses:
print(i)

192.168.142.245
192.168.109.50
192.168.86.232
192.168.131.147
192.168.205.12
192.168.200.48

Hint 1

Use i as the loop variable and the in operator to convey that the specified action should repeat
for each element that’s in the list ip_addresses.

Hint 2

To display the loop variable in every iteration, use the print() function inside the for loop.

4

1.7 Task 5

You are now given a list of IP addresses that are allowed to log in, stored in a variable called
allow_list. Write an if statement inside of the for loop. For each IP address in the list of IP
addresses from which users have tried to log in, display "IP address is allowed" if it is among
the allowed addresses and display "IP address is not allowed" otherwise.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[5]: # Assign `allow_list` to a list of IP addresses that are allowed to log in

allow_list = ["192.168.243.140", "192.168.205.12", "192.168.151.162", "192.168.
↪→178.71",

"192.168.86.232", "192.168.3.24", "192.168.170.243", "192.168.119.
↪→173"]

Assign `ip_addresses` to a list of IP addresses from which users have tried␣
↪→to log in

ip_addresses = ["192.168.142.245", "192.168.109.50", "192.168.86.232", "192.168.
↪→131.147",

"192.168.205.12", "192.168.200.48"]

For each IP address in the list of IP addresses from which users have tried␣
↪→to log in,

If it is among the allowed addresses, then display “IP address is allowed”
Otherwise, display “IP address is not allowed”

for i in ip_addresses:
if i in allow_list:

print("IP address is allowed")
else:

print("IP address is not allowed")

IP address is not allowed
IP address is not allowed
IP address is allowed
IP address is not allowed
IP address is allowed
IP address is not allowed

Hint 1

Use i as the loop variable and the in operator to convey that the specified action should repeat
for each element that’s in the list ip_addresses.

Hint 2

Make sure that the if statement checks whether the user’s IP address is in the list of allowed IP

5

addresses.

Hint 3

Use the print() function to display the messages.

1.8 Task 6

Imagine now that the information the users are trying to access is restricted, and if an IP address
outside the list of allowed IP addresses attempts access, the loop should terminate because further
investigation would be needed to assess whether this activity poses a threat. To achieve this, use
the break keyword and expand the message that is displayed to the user when their IP address is
not in allow_list to provide more specifics. Instead of "IP address is not allowed", display
"IP address is not allowed. Further investigation of login activity required".

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[6]: # Assign `allow_list` to a list of IP addresses that are allowed to log in

allow_list = ["192.168.243.140", "192.168.205.12", "192.168.151.162", "192.168.
↪→178.71",

"192.168.86.232", "192.168.3.24", "192.168.170.243", "192.168.119.
↪→173"]

Assign `ip_addresses` to a list of IP addresses from which users have tried␣
↪→to log in

ip_addresses = ["192.168.142.245", "192.168.109.50", "192.168.86.232", "192.168.
↪→131.147",

"192.168.205.12", "192.168.200.48"]

For each IP address in the list of IP addresses from which users have tried␣
↪→to log in,

If it is among the allowed addresses, then display “IP address is allowed”
Otherwise, display “IP address is not allowed”

for i in ip_addresses:
if i in allow_list:

print("IP address is allowed")
else:

print("IP address is not allowed. Further investigation of␣
↪→login activity required")

break

IP address is not allowed. Further investigation of login activity required

Hint 1

6

Use i as the loop variable and the in operator to convey that the specified action should repeat
for each element that’s in the list ip_addresses.

Make sure that the if statement checks whether the user’s IP address is in the list of allowed IP
addresses.

Use the break keyword to terminate the loop at the appropriate time.

Hint 2

Use the break keyword inside the else statement after the appropriate message is displayed.

Hint 3

Use the print() function to display the messages.

1.9 Task 7

You’ll now complete another task. This involves automating the creation of new employee IDs.

You have been asked to create employee IDs for a Sales department, with the criteria that the
employee IDs should all be numbers that are unique, divisble by 5, and falling between 5000 and
5150. The employee IDs can include both 5000 and 5150.

Write a while loop that generates unique employee IDs for the Sales department by iterating
through numbers and displays each ID created.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[7]: # Assign the loop variable `i` to an initial value of 5000

i = 5000

While loop that generates unique employee IDs for the Sales department by␣
↪→iterating through numbers

and displays each ID created

while i <= 5150:
print(i)
i = i + 5

5000
5005
5010
5015
5020
5025
5030
5035
5040
5045

7

5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150

Hint 1

Use a comparison operator to check whether i has reached the upper bound (which is the highest
employee ID number allowed). Remember that the employee IDs need to fall between 5000 and
5150.

Make sure to update the value of the loop variable i at the end of the loop.

Hint 2

Use the <= comparison operator to check whether i has reached the upper bound, since the employee
IDs need to fall between 5000 and 5150.

At the end of the loop, increment the loop variable by 5. This is because the employee IDs need to
be divisble by 5 and the first employee ID is set to 5000.

Hint 3

Use the <= comparison operator to check whether i has reached 5150, since the employee IDs need
to fall between 5000 and 5150.

Use the print() function to display the loop variable i in each iteration.

Use the = assignment operator and the + addition operator to increment the value of the loop
variable at the end of each iteration.

1.10 Task 8

You would like to incorporate a message that displays Only 10 valid employee ids remaining
as a helpful alert once the loop variable reaches 5100.

8

To do so, include an if statement in your code.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[8]: # Assign the loop variable `i` to an initial value of 5000

i = 5000

While loop that generates unique employee IDs for the Sales department by␣
↪→iterating through numbers

and displays each ID created
This loop displays "Only 10 valid employee ids remaining" once `i` reaches␣
↪→5100

while i <= 5150:
print(i)
if i == 5100:

print("Only 10 valid employee ids remaining")
i = i + 5

5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
Only 10 valid employee ids remaining
5105
5110
5115
5120
5125

9

5130
5135
5140
5145
5150

Hint 1

Use a comparison operator to check whether i has reached 5100.

Hint 2

Use the == comparison operator to check whether i has reached 5100.

Hint 3

Use the print() function to display the message.

Question 2 Why do you think the statement print(i) is written before the conditional
rather than inside the conditional?

The goal is to display every employee ID number that’s created, and the loop variable i represents
the ID number created in each iteration of the loop. The statement print(i) is written before the
conditional, so that the loop is displayed in every iteration. Otherwise, if print(i) was written
inside the conditional, the loop variable would only be printed out when it’s equal to 5100. (Since
the condition in the if statement is i == 5100.)

1.11 Conclusion

What are your key takeaways from this lab? * Iterative statements play a major role in
automating security-related processes that need to be repeated.
* You can for loops allow you to repeat a process a specified number of times. * You can use while
loops allow you to repeat a process until a specified condition has been met. Comparison operators
are often used in these conditions. * The < comparison operator allows you to check whether one
value is less than another. * The <= comparison operator allows you to check whether one value
is less than or equal to another. * The == comparison operator allows you to check whether one
value is equal to another.

10

	Exemplar: Create loops
	Introduction
	Scenario
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Conclusion

