
Exemplar_Assign Python variables

January 7, 2024

1 Exemplar: Assign Python variables

1.1 Introduction

Variables help security analysts to keep track of a variety of security-related information. For
example, analysts may need to create Python variables for the users who are allowed to log in, the
number of login attempts that they’re permitted, and the current number of attempts that a user
has made.

In this lab, you’ll practice assigning values to variables and determining their data types.

Tips for completing this lab

As you navigate this lab, keep the following tips in mind:

• ### YOUR CODE HERE ### indicates where you should write code. Be sure to replace this
with your own code before running the code cell.

• Feel free to open the hints for additional guidance as you work on each task.
• To enter your answer to a question, double-click the markdown cell to edit. Be sure to replace

the “[Double-click to enter your responses here.]” with your own answer.
• You can save your work manually by clicking File and then Save in the menu bar at the top

of the notebook.
• You can download your work locally by clicking File and then Download and then specifying

your preferred file format in the menu bar at the top of the notebook.

1.2 Scenario

You are a security analyst who is responsible for writing code that will automate analysis of login
attempts made to a specific device. As the first step, you’ll need to create variables to keep track of
information relevant to the login process. This information includes the device ID, list of approved
usernames, maximum login attempts allowed per user, current login attempts made by a user, and
login status.

Throughout this lab, you’ll assign these variables and check the data types of the variables.

1.3 Task 1

In your work as an analyst, imagine there is a device only users specified on an allow list can access,
and its device ID is "72e08x0".

1

In the following code cell, assign this value to a variable named device_id. Then, display the
contents of the variable and observe the output.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[1]: # Assign the `device_id` variable to the device ID that only specified users␣
↪→can access

device_id = "72e08x0"

Display `device_id`

print(device_id)

72e08x0

Hint 1

Use quotation marks around the value that you assign to the device_id variable.

Hint 2

Assign the value "72e08x0" to the variable device_id. To do this, place the value to right of the
= operator.

Hint 3

To display the contents of device_id, place the name of this variable inside the print() function.

1.4 Task 2

Now that the variable device_id is defined, you can return its data type.

In this task, use a Python function to find the data type of the variable device_id. Store the data
type in another variable called device_id_type. Then, display device_id_type to examine the
output.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[2]: # Assign the `device_id` variable to the device ID that only specified users␣
↪→can access

device_id = "72e08x0"

Assign `device_id_type` to the data type of `device_id`

device_id_type = type(device_id)

Display `device_id_type`

2

print(device_id_type)

<class 'str'>

Hint 1

The type() function allows you to get the data type of a given value.

Hint 2

Use type(device_id) to get the data type of the device_id variable.

Hint 3

To display device_id_type, place the name of this variable inside the print() function.

Question 1 Based on the output above, what do you observe about the data type of
device_id?

The output above shows that the data type of device_id is str, which means that device_id
stores a string value.

1.5 Task 3

As you continue your work, you’re provided a list of usernames of users who are allowed to access
the device. The usernames with this access are "madebowa", "jnguyen", "tbecker", "nhersh",
and "redwards".

In this task, create a variable called username_list. Assign a list with the approved usernames to
this variable. Then, display the value of the username_list variable.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[3]: # Assign `username_list` to the list of usernames who are allowed to access the␣
↪→device

username_list = ["madebowa", "jnguyen", "tbecker", "nhersh", "redwards"]

Display `username_list`

print(username_list)

['madebowa', 'jnguyen', 'tbecker', 'nhersh', 'redwards']

Hint 1

To create a list in Python, use square brackets. Inside the square brackets, write the elements of
the list, with a comma between elements.

Hint 2

3

To assign a value to a variable in Python, place the name of the variable to the left of the = operator,
and place the value to the right of the = operator.

In this task, make sure to place ["madebowa", "jnguyen", "tbecker", "nhersh", "redwards"]
to the right of the = operator.

Hint 3

To display username_list, place the name of this variable inside the print() function.

1.6 Task 4

In this task, find the data type of the username_list. Store the type in a variable called
username_list_type. Then, display username_list_type to examine the output.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[4]: # Assign `username_list` to the list of usernames who are allowed to access the␣
↪→device

username_list = ["madebowa", "jnguyen", "tbecker", "nhersh", "redwards"]

Assign `username_list_type` to the data type of `username_list`

username_list_type = type(username_list)

Display `username_list_type`

print(username_list_type)

<class 'list'>

Hint 1

The type() function allows you to get the data type of a given value.

Hint 2

To get the data type of username_list, call the type() function and pass in username_list.

Hint 3

In Python, you can use the print() function to display the value of a variable. To display
username_list_type, call the print() function and pass in username_list_type.

Question 2 Based on the output above, what do you observe about the data type of
username_list?

The output above shows that the data type of username_list is list, which means that
username_list stores a list.

4

1.7 Task 5

Now, imagine that you’ve been informed that the previous list is not up-to-date and that there is
another employee that now has access to the device. You’re given the updated list of usernames with
access, including the new employee, as follows: "madebowa", "jnguyen", "tbecker", "nhersh",
"redwards", and "lpope".

In this task, reassign the variable username_list to the new list. Run the code to display the list
before and after it’s been updated to observe the difference.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[5]: # Assign `username_list` to the list of usernames who are allowed to access the␣
↪→device

username_list = ["madebowa", "jnguyen", "tbecker", "nhersh", "redwards"]

Display `username_list`

print(username_list)

Assign `username_list` to the updated list of usernames who are allowed to␣
↪→access the device

username_list = ["madebowa", "jnguyen", "tbecker", "nhersh", "redwards",␣
↪→"lpope"]

Display `username_list`

print(username_list)

['madebowa', 'jnguyen', 'tbecker', 'nhersh', 'redwards']
['madebowa', 'jnguyen', 'tbecker', 'nhersh', 'redwards', 'lpope']

Hint 1

When reassigning a variable to a new value in Python, place the name of the variable to the left of
the = operator, just as you would when assigning the variable for the first time.

Hint 2

To reassign username_list to the updated list, place username_list to the left of the = operator.

Question 3 Based on the output above, what do you observe about the contents of
username_list?

The output above shows that the contents of username_list were updated after the variable was
reassigned to the new list.

5

The first print() call output the original contents of the list. The second print() call output the
updated contents, which includes the newly added username, "lpope".

1.8 Task 6

In this task, define a variable called max_logins that represents the maximum number of login
attempts allowed per user. Store the value 3 in this variable. Then, store its data type in another
variable called max_logins_type. Display max_logins_type to examine the output.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[6]: # Assign `max_logins` to the value 3

max_logins = 3

Assign `max_logins_type` to the data type of `max_logins`

max_logins_type = type(max_logins)

Display `max_login_type`

print(max_logins_type)

<class 'int'>

Hint 1

When assigning a value to a variable in Python, use the = operator. Place the name of the variable
to the left of the = operator, and place the value to the right of the = operator.

Hint 2

To assign 3 to max_logins, place max_logins to the left of the = operator, and place 3 to the right
of the = operator.

To assign max_logins_type, place max_logins_type to the left of the = operator before the type()
function call.

Hint 3

In Python, you can use the print() function to display the value of a variable. To display
max_logins_type, call print() and pass in max_logins_type.

Question 4 Based on the output above, what do you observe about the data type of
max_logins?

The output above shows that the data type of max_logins is int, which means that max_logins
stores an integer value.

6

1.9 Task 7

In this task, define a variable called login_attempts that represents the current number of login
attempts made by a user. Store the value 2 in this variable. Then, store login_attempts data type
in a variable called login_attempts_type. Display login_attempts_type to observe the output.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[2]: # Assign `login_attempts` to the value 2

login_attempts = 2

Assign `login_attempts_type` to the data type of `login_attempts`

login_attempts_type = type(login_attempts)

Display `login_attempts_type`

print(login_attempts_type)

<class 'int'>

Hint 1

When assigning a value to a variable in Python, use the = operator. Place the name of the variable
to the left of the = operator, and place the value to the right of the = operator.

Hint 2

To assign 2 to login_attempts, place login_attempts to the left of the = operator, and place 2
to the right of the = operator.

To assign login_attempts_type, place login_attempts_type to the left of the = operator, and
place a call to the type() function to the right of the = operator.

When calling type(), make sure to pass in login_attempts.

Hint 3

In Python, you can use the print() function to display the value of a variable. To display
login_attempts_type, call print() and pass in login_attempts_type.

Question 5 Based on the output above, what do you observe about the data type of
login_attempts?

The output above shows that the data type of login_attempts is int, which means that
login_attempts stores an integer value.

7

1.10 Task 8

In this task, you’ll determine the Boolean value that represents whether the current number of
login attempts a user has made is less than or equal to the maximum number of login attempts
allowed.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[8]: # Assign `max_logins` to the value 3

max_logins = 3

Assign `login_attempts` to the value 2

login_attempts = 2

Determine whether the current number of login attempts a user has made is␣
↪→less than or equal to the maximum number of login attempts allowed,

and display the resulting Boolean value

print(login_attempts <= max_logins)

True

Hint 1

In Python, you can use the <= comparison operator to determine whether one value is less than or
equal to another value.

Hint 2

To determine whether the current number of login attempts a user has made is less than or equal
to the maximum number of login attempts allowed, use the <= operator. Place login_attempts
to the left of the <= operator, and place max_logins to the right of the <= operator.

To make sure the resulting Boolean value is displayed, write this code inside of the parantheses
where print() is called.

Question 6 What is the output? What does this mean?

The output above is True, which indicates that login_attempts is less than or equal to
max_logins. In other words, the current number of attempts the user has made to log in has
not yet exceeded the maximum number of attempts allowed.

1.11 Task 9

This code continues to check for the Boolean value of whether max_logins is less than or equal to
login_attempts. In this task, reassign other values to login_attempts. For example, you might

8

choose a value that is higher than the maximum number of attempts allowed. Observe how the
output changes.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[9]: # Assign `max_logins` to the value 3

max_logins = 3

Assign `login_attempts` to a specific value

login_attempts = 4

Determine whether the current number of login attempts a user has made is␣
↪→less than or equal to the maximum number of login attempts allowed,

and display the resulting Boolean value

print(login_attempts <= max_logins)

False

Hint 1

To assign a specific value to login_attempts, make sure to write the value to the right of the =
operator.

Question 7 Based on the different values you assigned to login_attempts, what did
you observe about the output?

The Boolean value in the output changes depending on the value assigned to login_attempts.
For example, when login_attempts is assigned to 4, the output is False, which indicates that
login_attempts is not less than or equal to max_logins. In other words, the current number of
log in attempts the user has made has exceeded the maximum number of attempts allowed.

1.12 Task 10

Finally, you can also assign a Boolean value of True or False to a variable.

In this task, you’ll create a variable called login_status, which is a Boolean that represents
whether a user is logged in. Assign False to this variable and store its data type in a variable
called login_status_type and display it.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[10]: # Assign `login_status` to the Boolean value False

login_status = False

9

Assign `login_status_type` to the data type of `login_status`

login_status_type = type(login_status)

Display `login_status_type`

print(login_status_type)

<class 'bool'>

Hint 1

To assign the Boolean value False to the login_status variable, make sure to write False to the
right of the = operator.

Hint 2

Note that Boolean values should not have quotation marks around them in code.

Question 8 Based on the output above, what do you observe about the data type of
login_status?

The output above shows that the data type of the login_status is bool, which means that
login_status stores a Boolean value.

1.13 Conclusion

What are your key takeaways from this lab?

• There are many useful operators in Python that help you work with variables.
– The = assignment operator allows you to assign or reassign a specific value to a variable.
– The <= comparison operator allows you to compare the value of one variable to the value

of another.
• The type() function in Python helps you to determine the data type of an object.

– If you pass in a variable to type(), it will output the data type of the value stored in
the variable.

• The print() function in Python allows you to display information.
– It can take in a value directly, a variable that stores a value, or a comparison between

variables that evaluates to a Boolean value.

10

	Exemplar: Assign Python variables
	Introduction
	Scenario
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Task 9
	Task 10
	Conclusion

