
Exemplar_Address missing data

January 12, 2024

1 Exemplar: Address missing data

1.1 Introduction

The datasets that data professionals use to solve problems typically contain missing values, which
must be dealt with in order to achieve clean, useful data. This is particularly crucial in exploratory
data analysis (EDA). In this activity, you will learn how to address missing data.

You are a financial data consultant, and an investor has tasked your team with identifying new
business opportunities. To help them decide which future companies to invest in, you will provide
a list of current businesses valued at more than $1 billion. These are sometimes referred to as
“unicorns.” Your client will use this information to learn about profitable businesses in general.

The investor has asked you to provide them with the following data: - Companies in the
hardware industry based in Beijing, San Francisco, and London - Companies in the artificial
intelligence industry based in London - A list of the top 20 countries sorted by sum of company
valuations in each country, excluding United States, China, India, and United Kingdom - A
global valuation map of all countries except United States, China, India, and United Kingdom

Your dataset includes a list of businesses and data points, such as the year they were founded; their
industry; and their city, country, and continent.

1.2 Step 1: Imports

1.2.1 Import libraries

Import the following relevant Python libraries: * numpy * pandas * matplotlib.pyplot *
plotly.express * seaborn

[1]: # Import libraries and modules

### YOUR CODE HERE ###

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns

1



1.2.2 Load the dataset

The dataset is currently in CSV format and in a file named Unicorn_Companies.csv. As shown
in this cell, the dataset has been automatically loaded in for you. You do not need to download
the .csv file, or provide more code, in order to access the dataset and proceed with this lab. Please
continue with this activity by completing the following instructions.

[2]: # Read the data into a dataframe

### YOUR CODE HERE ###

df_companies = pd.read_csv('Unicorn_Companies.csv')

1.3 Step 2: Data exploration

Explore the dataset and answer questions that will guide your management of missing values.

1.3.1 Display top rows

Display the first 10 rows of the data to understand how the dataset is structured.

[3]: # Display the first 10 rows of the data.

### YOUR CODE HERE ###

df_companies.head(10)

[3]: Company Valuation Date Joined Industry \
0 Bytedance $180B 4/7/17 Artificial intelligence
1 SpaceX $100B 12/1/12 Other
2 SHEIN $100B 7/3/18 E-commerce & direct-to-consumer
3 Stripe $95B 1/23/14 Fintech
4 Klarna $46B 12/12/11 Fintech
5 Canva $40B 1/8/18 Internet software & services
6 Checkout.com $40B 5/2/19 Fintech
7 Instacart $39B 12/30/14 Supply chain, logistics, & delivery
8 JUUL Labs $38B 12/20/17 Consumer & retail
9 Databricks $38B 2/5/19 Data management & analytics

City Country/Region Continent Year Founded Funding \
0 Beijing China Asia 2012 $8B
1 Hawthorne United States North America 2002 $7B
2 Shenzhen China Asia 2008 $2B
3 San Francisco United States North America 2010 $2B
4 Stockholm Sweden Europe 2005 $4B
5 Surry Hills Australia Oceania 2012 $572M

2



6 London United Kingdom Europe 2012 $2B
7 San Francisco United States North America 2012 $3B
8 San Francisco United States North America 2015 $14B
9 San Francisco United States North America 2013 $3B

Select Investors
0 Sequoia Capital China, SIG Asia Investments, S…
1 Founders Fund, Draper Fisher Jurvetson, Rothen…
2 Tiger Global Management, Sequoia Capital China…
3 Khosla Ventures, LowercaseCapital, capitalG
4 Institutional Venture Partners, Sequoia Capita…
5 Sequoia Capital China, Blackbird Ventures, Mat…
6 Tiger Global Management, Insight Partners, DST…
7 Khosla Ventures, Kleiner Perkins Caufield & By…
8 Tiger Global Management
9 Andreessen Horowitz, New Enterprise Associates…

Hint 1

Refer to the materials about exploratory data analysis in Python.

Hint 2

There is a function in the pandas library that allows you to get a specific number of rows from the
top of a DataFrame.

Hint 3

Call the head(10) method on the dataframe.

1.3.2 Statistical properties of the dataset

Use methods and attributes of the dataframe to get information and descriptive statistics for the
data, including its range, data types, mean values, and shape.

[4]: # Get the shape of the dataset.

### YOUR CODE HERE ###

df_companies.shape

[4]: (1074, 10)

Hint 1

Refer to the material about exploratory data analysis in Python.

Hint 2

Call the shape attribute of the dataframe.

Question: What is the shape of the dataset? - (1074, 10)

3



[5]: # Get the data types and number of non-null values in the dataset.

### YOUR CODE HERE ###

df_companies.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1074 entries, 0 to 1073
Data columns (total 10 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Company 1074 non-null object
1 Valuation 1074 non-null object
2 Date Joined 1074 non-null object
3 Industry 1074 non-null object
4 City 1058 non-null object
5 Country/Region 1074 non-null object
6 Continent 1074 non-null object
7 Year Founded 1074 non-null int64
8 Funding 1074 non-null object
9 Select Investors 1073 non-null object
dtypes: int64(1), object(9)
memory usage: 84.0+ KB

Hint 1

Refer to the material about exploratory data analysis in Python.

Hint 2

Use the info() method.

Question: What are the data types of various columns? - Except for the Year Funded
column, which is int64, the data type for all other columns is object. You can get this information
using the info() method.

Question: How many columns contain null values? - Columns City and Select Investors
contain fewer non-null values than the total number of rows in the dataset, which indicates that
they are missing values. You can get this information using the info() method.

[6]: # Get descriptive statistics such as mean, standard deviation, and range of the␣
↪→numerical columns in the dataset.

### YOUR CODE HERE ###

df_companies.describe()

[6]: Year Founded
count 1074.000000
mean 2012.895717

4



std 5.698573
min 1919.000000
25% 2011.000000
50% 2014.000000
75% 2016.000000
max 2021.000000

Hint 1

Refer to the material about exploratory data analysis in Python.

Hint 2

There is a function in the pandas library that allows you to find descriptive statistics for the numeric
columns in a DataFrame.

Hint 3

Call the describe() method on the dataframe.

Question: In what year was the oldest company founded? - The oldest company in the list
was founded in 1919. This is the minimum value in Year Funded. You can get this information
using the describe() method.

1.3.3 Data Preprocessing

In order to answer the investor’s questions, some data preprocessing steps are required. The first
step is to add a new column to the dataframe containing just the year each company became a
unicorn company. Call this new column Year Joined.

[7]: # Create a new column `Year Joined`

### YOUR CODE HERE ###

df_companies['Year_Joined'] = pd.to_datetime(df_companies['Date Joined']).dt.
↪→year

For each country, you want to calculate the sum of all valuations of companies from that country.
However, in order to do this, you’ll need to first prepare the data. Currently, the data in the
Valuation column is a string that starts with a $ and ends with a B. Because this column is not
in a numeric datatype, pandas cannot perform mathematical operations on its values. The data in
this column needs to be converted to a numeric datatype.

In this step, define a function called str_to_num() that accepts as an argument:

• x: a string in the format of the values contained in the Valuation column

And returns:

• x: an int of the number represented by the input string

Example:

5



[IN]: str_to_num('$4B')
[OUT]: 4

To do this, use the string strip() method. This method is applied to a string. Its argument is
a string that contains all the characters that you want to remove from the beginning and end of
a given string—in any order. The specified characters will be removed until a valid character is
encountered. This process is applied moving forward from the beginning of the string and also
moving in reverse from the end of the string, thus removing unwanted beginning and trailing
characters.

Example:

[IN]: my_string = '#....... Section 3.2.1 Issue #32 .......'
my_string = my_string.strip('.#! ')
print(my_string)

[OUT]: 'Section 3.2.1 Issue #32'

Note that you must reassign the result back to a variable or else the change will not be permanent.

[8]: # Define the `str_to_num()` function

### YOUR CODE HERE ###
def str_to_num(x):

x = x.strip('$B')
x = int(x)

return x

Hint 1

The unwanted characters in the values contained in the Valuation column are '$' and 'B'.

Hint 2

Pass a string of the unwanted values as an argument to the strip() string method.

Hint 3

The final step before returning x should be converting it to an integer.

Now, use this function to create a new column called valuation_num that represents the Valuation
column as an integer value. To do this, use the series method apply() to apply the str_to_num()
function to the Valuation column.

apply() is a method that can be used on a DataFrame or Series object. In this case, you’re
using it on the Valuation series. The method accepts a function as an argument and applies that
function to each value in the series.

Example:

[IN]: def square(x):
return x ** 2

6

https://docs.python.org/3/library/stdtypes.html#str.strip
https://pandas.pydata.org/docs/reference/api/pandas.Series.apply.html


my_series = pd.Series([0, 1, 2, 3])
my_series

[OUT]: 0 0
1 1
2 2
3 3
dtype: int64

[IN]: my_series = my_series.apply(square)
my_series

[OUT]: 0 0
1 1
2 4
3 9
dtype: int64

Notice that the function passed as an argument to the apply() method does not have parentheses.
It’s just the function name.

[9]: # Apply the `str_to_num()` function to the `Valuation` column
# and assign the result back to a new column called `valuation_num`

### YOUR CODE HERE ###
df_companies['valuation_num'] = df_companies['Valuation'].apply(str_to_num)
df_companies[['Valuation', 'valuation_num']].head()

[9]: Valuation valuation_num
0 $180B 180
1 $100B 100
2 $100B 100
3 $95B 95
4 $46B 46

1.3.4 Find missing values

The unicorn companies dataset is fairly clean, with few missing values.

[10]: # Find the number of missing values in each column in this dataset.

### YOUR CODE HERE ###

df_companies.isna().sum()

7



[10]: Company 0
Valuation 0
Date Joined 0
Industry 0
City 16
Country/Region 0
Continent 0
Year Founded 0
Funding 0
Select Investors 1
Year_Joined 0
valuation_num 0
dtype: int64

Hint 1

The isna() DataFrame method will return a dataframe of Boolean values in the same shape as
your original dataframe. Values are True if the data is missing and False if it is not missing.

Hint 2

You’ll need to convert Boolean values into numerical values. Remember that True values are
considered 1 and False values are considered 0.

Hint 3

After applying the isna() method to the df_companies dataframe, apply the sum() method to
the results to return a pandas Series object with each column name and the number of NaN values
it contains.

Question: How many missing values are in each column in the dataset? - There is a
single missing value in the Select Investors column and 16 missing cities. There are no missing
values in other columns.

1.3.5 Review rows with missing values

Before dealing with missing values, it’s important to understand the nature of the missing value
that is being filled. Display all rows with missing values from df_companies. To do this, perform
the following three steps:

1. Apply the isna() method to the df_companies dataframe as you did in the last step. Re-
member, this results in a dataframe of the same shape as df_companies where each value is
True if its contents are NaN and a False if its contents are not NaN. Assign the results to a
variable called mask.

[11]: # 1. Apply the `isna()` method to the `df_companies` dataframe and assign back␣
↪→to `mask`

mask = df_companies.isna()
mask.tail()

8



[11]: Company Valuation Date Joined Industry City Country/Region \
1069 False False False False False False
1070 False False False False False False
1071 False False False False False False
1072 False False False False False False
1073 False False False False False False

Continent Year Founded Funding Select Investors Year_Joined \
1069 False False False False False
1070 False False False False False
1071 False False False False False
1072 False False False False False
1073 False False False False False

valuation_num
1069 False
1070 False
1071 False
1072 False
1073 False

You’re not done yet. You still need to go from this dataframe of Boolean values to a dataframe of
just the rows of df_companies that contain at least one NaN value. This means that you need a
way to find the indices of the rows of the Boolean dataframe that contain at least one True value,
then extract those indices from df_companies.

You can do this using the any() method for DataFrame objects. This method returns a Boolean
Series indicating whether any value is True over a specified axis.

Example:

df =
A B C

0 0 a 10
1 False 0 1
2 NaN NaN NaN

[IN]: df.any(axis=0)

[OUT]: A False
B True
C True
dtype: bool

[IN]: df.any(axis=1)

[OUT]: 0 True

9

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html


1 True
2 False
dtype: bool

Note that 0, False, and NaN are considered False and anything else is considered True.

2. Apply the any() method to the Boolean dataframe you created to make a Boolean series
where each element in the series represents True if a row of the dataframe contains any True
values and False if any row in the dataframe contains any False values. Assign the results
back to mask.

[12]: # 2. Apply the `any()` method to `mask` and assign the results back to `mask`

### YOUR CODE HERE ###

mask = mask.any(axis=1)
mask.head()

[12]: 0 False
1 False
2 False
3 False
4 False
dtype: bool

Hint 1

Refer to the example given for how to use the any() method for dataframes.

Hint 2

Using the provided example as a guide, which axis returns rows that have at least one True value?

Hint 3

mask.any(axis=1) will return a Boolean series that represents whether each row of mask contains
at least one True value.

3. Because mask is now a series of Boolean values, you can use it as a Boolean mask. Ap-
ply the Boolean mask to the df_companies dataframe to return a filtered dataframe con-
taining just the rows that contain a missing value. Assign the results to a variable called
df_missing_rows.

[13]: # 3. Apply `mask` as a Boolean mask to `df_companies` and assign results to␣
↪→`df_missing_rows`

### YOUR CODE HERE ###
df_missing_rows = df_companies[mask]
df_missing_rows

[13]: Company Valuation Date Joined \
12 FTX $32B 7/20/21

10



170 HyalRoute $4B 5/26/20
242 Moglix $3B 5/17/21
251 Trax $3B 7/22/19
325 Amber Group $3B 6/21/21
382 Ninja Van $2B 9/27/21
541 Advance Intelligence Group $2B 9/23/21
629 LinkSure Network $1B 1/1/15
811 Carousell $1B 9/15/21
848 Matrixport $1B 6/1/21
880 bolttech $1B 7/1/21
889 Carro $1B 6/14/21
893 Cider $1B 9/2/21
980 NIUM $1B 7/13/21
986 ONE $1B 12/8/21
994 PatSnap $1B 3/16/21
1061 WeLab $1B 11/8/17

Industry City Country/Region \
12 Fintech NaN Bahamas
170 Mobile & telecommunications NaN Singapore
242 E-commerce & direct-to-consumer NaN Singapore
251 Artificial intelligence NaN Singapore
325 Fintech NaN Hong Kong
382 Supply chain, logistics, & delivery NaN Singapore
541 Artificial intelligence NaN Singapore
629 Mobile & telecommunications Shanghai China
811 E-commerce & direct-to-consumer NaN Singapore
848 Fintech NaN Singapore
880 Fintech NaN Singapore
889 E-commerce & direct-to-consumer NaN Singapore
893 E-commerce & direct-to-consumer NaN Hong Kong
980 Fintech NaN Singapore
986 Internet software & services NaN Singapore
994 Internet software & services NaN Singapore
1061 Fintech NaN Hong Kong

Continent Year Founded Funding \
12 North America 2018 $2B
170 Asia 2015 $263M
242 Asia 2015 $471M
251 Asia 2010 $1B
325 Asia 2015 $328M
382 Asia 2014 $975M
541 Asia 2016 $536M
629 Asia 2013 $52M
811 Asia 2012 $288M
848 Asia 2019 $100M

11



880 Asia 2018 $210M
889 Asia 2015 $595M
893 Asia 2020 $140M
980 Asia 2014 $285M
986 Asia 2011 $515M
994 Asia 2007 $352M
1061 Asia 2013 $871M

Select Investors Year_Joined \
12 Sequoia Capital, Thoma Bravo, Softbank 2021
170 Kuang-Chi 2020
242 Jungle Ventures, Accel, Venture Highway 2021
251 Hopu Investment Management, Boyu Capital, DC T… 2019
325 Tiger Global Management, Tiger Brokers, DCM Ve… 2021
382 B Capital Group, Monk's Hill Ventures, Dynamic… 2021
541 Vision Plus Capital, GSR Ventures, ZhenFund 2021
629 NaN 2015
811 500 Global, Rakuten Ventures, Golden Gate Vent… 2021
848 Dragonfly Captial, Qiming Venture Partners, DS… 2021
880 Mundi Ventures, Doqling Capital Partners, Acti… 2021
889 SingTel Innov8, Alpha JWC Ventures, Golden Gat… 2021
893 Andreessen Horowitz, DST Global, IDG Capital 2021
980 Vertex Ventures SE Asia, Global Founders Capit… 2021
986 Temasek, Guggenheim Investments, Qatar Investm… 2021
994 Sequoia Capital China, Shunwei Capital Partner… 2021
1061 Sequoia Capital China, ING, Alibaba Entreprene… 2017

valuation_num
12 32
170 4
242 3
251 3
325 3
382 2
541 2
629 1
811 1
848 1
880 1
889 1
893 1
980 1
986 1
994 1
1061 1

Question: Is there a specific country/region that shows up a lot in this missing values

12



dataframe? Which one? - Twelve of the 17 rows with missing values are for companies from
Singapore.

Question: What steps did you take to find missing data? - DataFrame.isna() will return
a Boolean dataframe indicating every location that is NaN with True - You can use sum() in
conjunction with isna() to get the counts of NaN values in each column. - You can use any() in
conjunction with isna() to create a Boolean mask, which can be applied to the original dataframe
to obtain just the rows with at least one NaN value.

Question: What observations can be made about the forms and context of missing
data? - Missing values can take different forms and are usually context-specific. Not every missing
value is labeled as na or None, or Null.

Question: What other methods could you use to address missing data? - If possible,
ask the business users for insight into the causes of missing values and, if possible, get domain
knowledge to intelligently impute these values.

1.4 Step 3: Model building

Think of the model you are building as the completed dataset, which you will then use to inform
the questions the investor has asked of you.

1.4.1 Two ways to address missing values

There are several ways to address missing values, which is critical in EDA. The two primary methods
are removing them and imputing other values in their place. Choosing the proper method depends
on the business problem and the value the solution will add or take away from the dataset.

Here, you will try both.

To compare the the effect of different actions, first store the original number of values in a variable.
Create a variable called count_total that is an integer representing the total number of values in
df_companies. For example, if the dataframe had 5 rows and 2 columns, then this number would
be 10.

[14]: # Store the total number of values in a variable called `count_total`

### YOUR CODE HERE ###

count_total = df_companies.size
count_total

[14]: 12888

Now, remove all rows containing missing values and store the total number of remaining values in
a variable called count_dropna_rows.

[15]: # Drop the rows containing missing values, determine number of remaining values

13



### YOUR CODE HERE ###

count_dropna_rows = df_companies.dropna().size
count_dropna_rows

[15]: 12684

Hint

Use the dropna() dataframe method to drop rows with missing values.

Now, remove all columns containing missing values and store the total number of cells in a variable
called count_dropna_columns.

[16]: # Drop the columns containing missing values, determine number of remaining␣
↪→values

### YOUR CODE HERE ###

count_dropna_columns = df_companies.dropna(axis=1).size
count_dropna_columns

[16]: 10740

Hint

Specify axis=1 to the dropna() method to drop columns with missing values.

Next, print the percentage of values removed by each method and compare them.

[17]: # Print the percentage of values removed by dropping rows.

### YOUR CODE HERE ###

row_percent = ((count_total - count_dropna_rows) / count_total) * 100
print(f'Percentage removed, rows: {row_percent:.3f}')

# Print the percentage of values removed by dropping columns.

### YOUR CODE HERE ###

col_percent = ((count_total - count_dropna_columns) / count_total) * 100
print(f'Percentage removed, columns: {col_percent:.3f}')

Percentage removed, rows: 1.583
Percentage removed, columns: 16.667

Question: Which method was most effective? Why?

The percentage removed was significantly higher for columns than it was for rows. Since both
approaches result in a dataset with no missing values, the “most effective” method depends on how

14



much data you have and what you want to do with it. It might be best to use the way that leaves
the most data intact—in this case, dropping rows. Or, if you don’t have many samples and don’t
want to lose any, but you don’t need all your columns, then dropping columns might be best. With
this data, it would probably be best to drop rows in the majority of cases.

Now, practice the second method: imputation. Perform the following steps:

1. Use the fillna() dataframe method to fill each missing value with the next non-NaN value
in its column. Assign the results to a new dataframe called df_companies_backfill.

Example:

df =
A B C

0 5 a NaN
1 10 NaN False
2 NaN c True

[IN]: df.fillna(method='backfill')

[OUT]:
A B C

0 5 a False
1 10 c False
2 NaN c True

Notice that if there is a NaN value in the last row, it will not backfill because there is no subsequent
value in the column to refer to.

2. Show the rows that previously had missing values.

[18]: # 1. Fill missing values using the 'fillna()' method, back-filling

### YOUR CODE HERE ###

df_companies_backfill = df_companies.fillna(method='backfill')

# 2. Show the rows that previously had missing values

### YOUR CODE HERE ###

df_companies_backfill.iloc[df_missing_rows.index, :]

[18]: Company Valuation Date Joined \
12 FTX $32B 7/20/21
170 HyalRoute $4B 5/26/20
242 Moglix $3B 5/17/21
251 Trax $3B 7/22/19
325 Amber Group $3B 6/21/21
382 Ninja Van $2B 9/27/21

15

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html#pandas.DataFrame.fillna


541 Advance Intelligence Group $2B 9/23/21
629 LinkSure Network $1B 1/1/15
811 Carousell $1B 9/15/21
848 Matrixport $1B 6/1/21
880 bolttech $1B 7/1/21
889 Carro $1B 6/14/21
893 Cider $1B 9/2/21
980 NIUM $1B 7/13/21
986 ONE $1B 12/8/21
994 PatSnap $1B 3/16/21
1061 WeLab $1B 11/8/17

Industry City Country/Region \
12 Fintech Jacksonville Bahamas
170 Mobile & telecommunications El Segundo Singapore
242 E-commerce & direct-to-consumer San Francisco Singapore
251 Artificial intelligence Amsterdam Singapore
325 Fintech San Francisco Hong Kong
382 Supply chain, logistics, & delivery San Francisco Singapore
541 Artificial intelligence Helsinki Singapore
629 Mobile & telecommunications Shanghai China
811 E-commerce & direct-to-consumer New York Singapore
848 Fintech San Francisco Singapore
880 Fintech Englewood Singapore
889 E-commerce & direct-to-consumer Lincoln Singapore
893 E-commerce & direct-to-consumer Mexico City Hong Kong
980 Fintech Bengaluru Singapore
986 Internet software & services New York Singapore
994 Internet software & services London Singapore
1061 Fintech Beijing Hong Kong

Continent Year Founded Funding \
12 North America 2018 $2B
170 Asia 2015 $263M
242 Asia 2015 $471M
251 Asia 2010 $1B
325 Asia 2015 $328M
382 Asia 2014 $975M
541 Asia 2016 $536M
629 Asia 2013 $52M
811 Asia 2012 $288M
848 Asia 2019 $100M
880 Asia 2018 $210M
889 Asia 2015 $595M
893 Asia 2020 $140M
980 Asia 2014 $285M
986 Asia 2011 $515M

16



994 Asia 2007 $352M
1061 Asia 2013 $871M

Select Investors Year_Joined \
12 Sequoia Capital, Thoma Bravo, Softbank 2021
170 Kuang-Chi 2020
242 Jungle Ventures, Accel, Venture Highway 2021
251 Hopu Investment Management, Boyu Capital, DC T… 2019
325 Tiger Global Management, Tiger Brokers, DCM Ve… 2021
382 B Capital Group, Monk's Hill Ventures, Dynamic… 2021
541 Vision Plus Capital, GSR Ventures, ZhenFund 2021
629 Sequoia Capital India, The Times Group, GMO Ve… 2015
811 500 Global, Rakuten Ventures, Golden Gate Vent… 2021
848 Dragonfly Captial, Qiming Venture Partners, DS… 2021
880 Mundi Ventures, Doqling Capital Partners, Acti… 2021
889 SingTel Innov8, Alpha JWC Ventures, Golden Gat… 2021
893 Andreessen Horowitz, DST Global, IDG Capital 2021
980 Vertex Ventures SE Asia, Global Founders Capit… 2021
986 Temasek, Guggenheim Investments, Qatar Investm… 2021
994 Sequoia Capital China, Shunwei Capital Partner… 2021
1061 Sequoia Capital China, ING, Alibaba Entreprene… 2017

valuation_num
12 32
170 4
242 3
251 3
325 3
382 2
541 2
629 1
811 1
848 1
880 1
889 1
893 1
980 1
986 1
994 1
1061 1

Hint 1

To backfill missing values, refer to the example provided.

Hint 2

To show the rows that previously had missing values, you’ll need the indices of the rows that had
missing values.

17



Hint 3

• You already have a dataframe of rows with missing values. It’s stored in a variable called
df_missing_rows.

• To access its index, call df_missing_rows.index. This will give you the row numbers of
rows with missing values.

• Use these index numbers in an iloc[] selection statement on the df_companies_backfill
dataframe to extract those row numbers.

Question: Do the values that were used to fill in for the missing values make sense? -
No, the values seem to be added without consideration of the country those cities are located in.

Another option is to fill the values with a certain value, such as ‘Unknown’. However, doing so
doesn’t add any value to the dataset and could make finding the missing values difficult in the
future. Reviewing the missing values in this dataset determines that it is fine to leave the values
as they are. This also avoids adding bias to the dataset.

1.5 Step 4: Results and evaluation

Now that you’ve addressed your missing values, provide your investor with their requested data
points.

1.5.1 Companies in the Hardware Industry

Your investor is interested in identifying unicorn companies in the Hardware industry in the fol-
lowing cities: Beijing, San Francisco, and London. They are also interested in companies in the
Artificial intelligence industry in London.

Write a selection statement that extracts the rows that meet these criteria. This task requires
complex conditional logic. Break the process into the following parts.

1. Create a mask to apply to the df_companies dataframe. The following logic is a pseudo-code
representation of how this mask could be structured.

((Industry==Hardware) and (City==Beijing, San Francisco, or London))
OR
((Industry==Artificial intelligence) and (City==London))

You’re familiar with how to create Boolean masks based on conditional logic in pandas. How-
ever, you might not know how to write a conditional statement that selects rows that have any
one of several possible values in a given column. In this case, this is the (City==Beijing, San
Francisco, or London) part of the expression.

For this type of construction, use the isin() Series method. This method is applied to a pandas
series and, for each value in the series, checks whether it is a member of whatever is passed as its
argument.

Example:

18

https://pandas.pydata.org/docs/reference/api/pandas.Series.isin.html#pandas.Series.isin


[IN]: my_series = pd.Series([0, 1, 2, 3])
my_series

[OUT]: 0 0
1 1
2 2
3 3
dtype: int64

[IN]: my_series.isin([1, 2])

[OUT]: 0 False
1 True
2 True
3 False
dtype: bool

2. Apply the mask to the df_companies dataframe and assign the result to a new variable called
df_invest.

[19]: # 1. Create a Boolean mask using conditional logic

### YOUR CODE HERE ###

cities = ['Beijing', 'San Francisco', 'London']
mask = (

(df_companies['Industry']=='Hardware') & (df_companies['City'].isin(cities))
) | (

(df_companies['Industry']=='Artificial intelligence') &␣
↪→(df_companies['City']=='London')

)

# 2. Apply the mask to the `df_companies` dataframe and assign the results to␣
↪→`df_invest`

### YOUR CODE HERE ###
df_invest = df_companies[mask]
df_invest

[19]: Company Valuation Date Joined Industry \
36 Bitmain $12B 7/6/18 Hardware
43 Global Switch $11B 12/22/16 Hardware
147 Chipone $5B 12/16/21 Hardware
845 Density $1B 11/10/21 Hardware
873 BenevolentAI $1B 6/2/15 Artificial intelligence
923 Geek+ $1B 11/21/18 Hardware
1040 TERMINUS Technology $1B 10/25/18 Hardware

19



1046 Tractable $1B 6/16/21 Artificial intelligence

City Country/Region Continent Year Founded Funding \
36 Beijing China Asia 2015 $765M
43 London United Kingdom Europe 1998 $5B
147 Beijing China Asia 2008 $1B
845 San Francisco United States North America 2014 $217M
873 London United Kingdom Europe 2013 $292M
923 Beijing China Asia 2015 $439M
1040 Beijing China Asia 2015 $623M
1046 London United Kingdom Europe 2014 $120M

Select Investors Year_Joined \
36 Coatue Management, Sequoia Capital China, IDG … 2018
43 Aviation Industry Corporation of China, Essenc… 2016
147 China Grand Prosperity Investment, Silk Road H… 2021
845 Founders Fund, Upfront Ventures, 01 Advisors 2021
873 Woodford Investment Management 2015
923 Volcanics Ventures, Vertex Ventures China, War… 2018
1040 China Everbright Limited, IDG Capital, iFLYTEK 2018
1046 Insight Partners, Ignition Partners, Georgian … 2021

valuation_num
36 12
43 11
147 5
845 1
873 1
923 1
1040 1
1046 1

Hint 1

• Remember that pandas uses & for “and”, | for “or”, and ~ for “not”.
– Remember that each condition needs to be in its own set of parentheses. Refer to the

above pseudo-code for an example.

Hint 2

• Use (Series.isin(list_of_cities)) to represent the logic: (City==Beijing, San Fran-
cisco, or London)‘.

– There are two sets of conditional pairs: ((A) and (B)) or ((C) and (D)). Make sure the
parentheses reflect this logic.

Hint 3

Consider using the following code:

cities = ['Beijing', 'San Francisco', 'London'] mask = (

20



(df_companies['Industry']=='Hardware') & (df_companies['City'].isin(cities))
) | ( (df_companies['Industry']=='Artificial intelligence') &
(df_companies['City']=='London') ) df_invest = df_companies[mask]

Question: How many companies meet the criteria given by the investor? - Eight com-
panies meet the stated criteria.

1.5.2 List of countries by sum of valuation

For each country, sum the valuations of all companies in that country, then sort the results in de-
scending order by summed valuation. Assign the results to a variable called national_valuations.

[20]: # Group the data by`Country/Region`

### YOUR CODE HERE ###

national_valuations = df_companies.groupby(['Country/Region'])['valuation_num'].
↪→sum(

).sort_values(ascending=False).reset_index()

# Print the top 15 values of the DataFrame.

### YOUR CODE HERE ###

national_valuations.head(15)

[20]: Country/Region valuation_num
0 United States 1933
1 China 696
2 India 196
3 United Kingdom 195
4 Germany 72
5 Sweden 63
6 Australia 56
7 France 55
8 Canada 49
9 South Korea 41
10 Israel 39
11 Brazil 37
12 Bahamas 32
13 Indonesia 28
14 Singapore 21

Hint

Use a groupby() statement to group by Country/Region, then isolate the valuation_num column,
sum it, and use the sort_values() method to sort the results.

Question: Which countries have the highest sum of valuation?

21



The sorted data indicates that the four countries with highest total company valuations are the
United States, China, India, and the United Kingdom. However, your investor specified that these
countries should not be included in the list because they are outliers.

1.5.3 Filter out top 4 outlying countries

Use this grouped and summed data to plot a barplot. However, to meet the needs of your stake-
holder, you must first remove the United States, China, India, and the United Kingdom. Re-
move these countries from national_valuations and reassign the results to a variable called
national_valuations_no_big4.

[21]: # Remove outlying countries

### YOUR CODE HERE ###

national_valuations_no_big4 = national_valuations.iloc[4:, :]

national_valuations_no_big4.head()

[21]: Country/Region valuation_num
4 Germany 72
5 Sweden 63
6 Australia 56
7 France 55
8 Canada 49

Hint

There are a number of ways to accomplish this task. One of the easiest ways is to use a simple
iloc[] selection statement to select row indices 4–end and all columns of national_valuations.

1.5.4 BONUS CONTENT: Alternative approach (optional)

You can also use isin() to create a Boolean mask to filter out specific values of the Country/Region
column. In this case, this process is longer and more complicated than simply using the iloc[]
statement. However, there will be situations where this is the most direct approach.

How could you use isin() and your knowledge of pandas conditional operators and Boolean masks
to accomplish the same task?

[22]: # (Optional) Use `isin()` to create a Boolean mask to accomplish the same task

### YOUR CODE HERE ###

mask = ~national_valuations['Country/Region'].isin(['United States', 'China',␣
↪→'India', 'United Kingdom'])

national_valuations_no_big4 = national_valuations[mask]
national_valuations_no_big4.head()

22



[22]: Country/Region valuation_num
4 Germany 72
5 Sweden 63
6 Australia 56
7 France 55
8 Canada 49

Answer

In this case, there are 46 total countries and you want to keep countries 5–46 and filter out countries
1–4. To use isin() would require you to list out 42 countries:

mask = national_valuations['Country/Region'].isin(['country_5', 'country_6', ... 'country_46'])

This is very impractical. However, you can invert the statement to simplify the job. The above
impractical statement becomes:

mask = ~national_valuations['Country/Region'].isin(['country_1', 'country_2', 'country_3', 'country_4'])

Notice the ~ that precedes the whole statement. This transforms the meaning from “country is in
this list” to “country is NOT in this list.”

Then, simply apply the mask to national_valuations and assign the result back to
national_valuations_no_big4.

1.5.5 Create barplot for top 20 non-big-4 countries

Now, the data is ready to reveal the top 20 non-big-4 countries with the highest total company
valuations. Use seaborn’s barplot() function to create a plot showing national valuation on one
axis and country on the other.

[23]: # Create a barplot to compare the top 20 non-big-4 countries with highest␣
↪→company valuations

### YOUR CODE HERE ###

sns.barplot(data=national_valuations_no_big4.head(20),
y='Country/Region',
x='valuation_num')

plt.title('Top 20 non-big-4 countries by total company valuation')
plt.show();

23

https://seaborn.pydata.org/generated/seaborn.barplot.html


Hint 1

Select the top 20 rows in national_valuations_no_big4.

Hint 2

• Select the top 20 rows in df_companies_sum_outliers_removed by using the head(20)
method.

• Specify Country/Region for the x parameter of the function and valuation_num for the y
parameter of the function (or vice versa).

1.5.6 Plot maps

Your investor has also asked for a global valuation map of all countries except United States,
China, India, and United Kingdom (a.k.a. “big-four countries”).

You have learned about using scatter_geo() from the plotly.express library to create plot
data on a map. Create a scatter_geo() plot that depicts the total valuations of each non-big-four
country on a world map, where each valuation is shown as a circle on the map, and the size of the
circle is proportional to that country’s summed valuation.

NOTE: The output of the following code is a dynamic plot that requires you to run the code to
display it. To do this, go to the Cell menu at the top of the page and select Run All.

[24]: # Plot the sum of valuations per country.

24

https://plotly.com/python-api-reference/generated/plotly.express.scatter_geo


data = national_valuations_no_big4

px.scatter_geo(data,
locations='Country/Region',
size='valuation_num',
locationmode='country names',
color='Country/Region',
title='Total company valuations by country (non-big-four)')

Hint 1

Use the national_valuations_no_big4 dataframe that you already created.

Hint 2

To plot the data: * Use national_valuations_no_big4 as the data_frame argument of the
scatter_geo() function. * Use 'Country/Region' as the locations argument. * Use 'country
names' as the locationmode argument. * Use 'Country/Region' as the color argument.

Don’t forget to include a title!

Question: How is the valuation sum per country visualized in the plot? - Valuation sum
per country is visualized by the size of circles around the map.

Question: Does any region stand out as having a lot of activity? - Europe has a lot of
unicorn companies in a concentrated area.

1.6 Conclusion

What are some key takeaways that you learned during this lab? * Missing data is a
common problem for data professionals anytime they work with a data sample. * Addressing
missing values is a part of the data-cleaning process and an important step in EDA. * Address
missing values by either removing them or filling them in. * When considering how to address
missing values, keep in mind the business, the data, and the questions to be answered. Always
ensure you are not introducing bias into the dataset. * Addressing the missing values enabled you
to answer your investor’s questions.

How would you present your findings from this lab to others? Consider the information
you would provide (and what you would omit), how you would share the various
data insights, and how data visualizations could help your presentation. * For the
industry specific companies in certain locations, you could provide a short list of company names
and locations. * For the top 20 countries by sum of valuations, you could use the plot you created
in this lab or share a list. - For the top 20 countries sorted by sum of company valuations in
each country, you would exclude United States, China, India, and United Kingdom. * For the
questions concerning the valuation map, in addition to your visuals, you would provide a short
summary of the data points. This is because the investor did not request a further breakdown of
this data.

Reference

Bhat, M.A. Unicorn Companies

25

https://www.kaggle.com/datasets/mysarahmadbhat/unicorn-companies


Congratulations! You’ve completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

26


	Exemplar: Address missing data
	Introduction
	Step 1: Imports
	Import libraries
	Load the dataset

	Step 2: Data exploration
	Display top rows
	Statistical properties of the dataset
	Data Preprocessing
	Find missing values
	Review rows with missing values

	Step 3: Model building
	Two ways to address missing values

	Step 4: Results and evaluation
	Companies in the Hardware Industry
	List of countries by sum of valuation
	Filter out top 4 outlying countries
	BONUS CONTENT: Alternative approach (optional)
	Create barplot for top 20 non-big-4 countries
	Plot maps

	Conclusion


