
Annotated follow-along guide_EDA structuring with Python

January 4, 2024

1 Annotated follow-along guide: EDA structuring with Python

This notebook contains the code used in the following instructional video: EDA structuring with
Python

1.1 Introduction

Throughout this notebook, we will practice structuring data in Python. Before getting started,
watch the associated instructional video and complete the in-video question. All of the code we
will be implementing and related instructions are contained in this notebook.

1.2 Overview

In this notebook, we will examine lightning strike data collected by the National Oceanic and
Atmospheric Association (NOAA) for the year of 2018. To complete this notebook, we will:

• Find the locations with the greatest number of strikes within a single day
• Examine the locations that had the greatest number of days with at least one lightning strike
• Determine whether certain days of the week had more lightning strikes than others

• Add data from 2016 and 2017 and, for each month, calculate the percentage of total lightning
strikes for that year that occurred in that month

• Plot this data on a bar graph

1.3 Import packages and libraries

Before getting started, we will need to import all the required libraries and extensions. Throughout
the course, we will be using pandas for operations, and matplotlib and seaborn for plotting.

[1]: # Import statements
import pandas as pd
import numpy as np
import seaborn as sns
import datetime
from matplotlib import pyplot as plt

1

https://www.coursera.org/learn/go-beyond-the-numbers-translate-data-into-insight/lecture/Pf6KW/eda-structuring-with-python
https://www.coursera.org/learn/go-beyond-the-numbers-translate-data-into-insight/lecture/Pf6KW/eda-structuring-with-python


1.3.1 Organize the data

[2]: # Read in the 2018 data.
df = pd.read_csv('eda_structuring_with_python_dataset1.csv')
df.head()

[2]: date number_of_strikes center_point_geom
0 2018-01-03 194 POINT(-75 27)
1 2018-01-03 41 POINT(-78.4 29)
2 2018-01-03 33 POINT(-73.9 27)
3 2018-01-03 38 POINT(-73.8 27)
4 2018-01-03 92 POINT(-79 28)

Just like the data you encountered previously, this dataset has three columns: date,
number_of_strikes, and center_point_geom. Start by converting the date column to datetime.

[3]: # Convert the `date` column to datetime.
df['date'] = pd.to_datetime(df['date'])

Now, let’s check the shape of the dataframe.

[4]: df.shape

[4]: (3401012, 3)

Check for duplicates. If the shape of the data is different after running this code, you will know
there were duplicate rows.

[5]: df.drop_duplicates().shape

[5]: (3401012, 3)

The shape of the dataset after dropping duplicates is the same, so you can assume there are no
duplicates. Hence, there is at most one row per date, per area, and per number of strikes.

1.3.2 Locations with most strikes in a single day

To identify the locations with the most strikes in a single day, we will sort the number_of_strikes
column in descending value, or by most to least strikes.

[6]: # Sort by number of strikes in descending order.
df.sort_values(by='number_of_strikes', ascending=False).head(10)

[6]: date number_of_strikes center_point_geom
302758 2018-08-20 2211 POINT(-92.5 35.5)
278383 2018-08-16 2142 POINT(-96.1 36.1)
280830 2018-08-17 2061 POINT(-90.2 36.1)
280453 2018-08-17 2031 POINT(-89.9 35.9)

2



278382 2018-08-16 1902 POINT(-96.2 36.1)
11517 2018-02-10 1899 POINT(-95.5 28.1)
277506 2018-08-16 1878 POINT(-89.7 31.5)
24906 2018-02-25 1833 POINT(-98.7 28.9)
284320 2018-08-17 1767 POINT(-90.1 36)
24825 2018-02-25 1741 POINT(-98 29)

1.3.3 Locations with most days with at least one lightning strike

To find the number of days that a given geographic location had at least one lightning strike, we
will use the value_counts() function on the center_point_geom column. The logic is that if each
row represents a location-day, then counting the number of times each location occurs in the data
will give you the number of days that location had lightning.

[7]: # Identify the locations that appear most in the dataset.
df.center_point_geom.value_counts()

[7]: POINT(-81.5 22.5) 108
POINT(-84.1 22.4) 108
POINT(-82.5 22.9) 107
POINT(-82.7 22.9) 107
POINT(-82.5 22.8) 106

…
POINT(-119.3 35.1) 1
POINT(-119.3 35) 1
POINT(-119.6 35.6) 1
POINT(-119.4 35.6) 1
POINT(-58.5 45.3) 1
Name: center_point_geom, Length: 170855, dtype: int64

The locations with the most days with lightning strikes had at least one strike on 108 days—
nearly one out of every three days of the year. These locations are all rather close to each other
geographically. Notice also that the value_counts() function automatically sorts the results in
descending order.

Now we will examine whether there is an even distribution of values, or whether 108 strikes is an
unusually high number of days with lightning strikes. We will use the value_counts() function
again, but this time we will output the top 20 results. We will also rename the columns and apply
a color gradient.

[8]: # Identify the top 20 locations with most days of lightning.
df.center_point_geom.value_counts()[:20].rename_axis('unique_values').
↪→reset_index(name='counts').style.background_gradient()

[8]: <pandas.io.formats.style.Styler at 0x7fa600c18a90>

3



1.3.4 Lightning strikes by day of week

One useful grouping is categorizing lightning strikes by day of the week, which will tell us whether
any particular day of the week had fewer or more lightning strikes than others. To calculate this, we
will take advantage of the fact that the data in our date column is of the datetime class. Because
these entries are datetime objects, we can extract date-related information from them and create
new columns.

First, we will create a column called week using dt.isocalendar() on the date column. This
function is designed to be used on a pandas series, and it will return a new dataframe with year,
week, and day columns. The information is formatted numerically; for example, January 3, 1950,
would be represented as:

Year Week Day
1950 1 3

Because we only want to extract the week number, we will add .week to the end. You can learn
more about dt.isocalendar() in the pandas.Series.dt.isocalendar documentation.

We will also add a weekday column using dt.day_name(). This is another pandas function designed
to be used on a pandas series. It extracts the text name of the day for any given datetime date.
You can learn more about this function in the pandas.Series.dt.day_name documentation.

[9]: # Create two new columns.
df['week'] = df.date.dt.isocalendar().week
df['weekday'] = df.date.dt.day_name()
df.head()

[9]: date number_of_strikes center_point_geom week weekday
0 2018-01-03 194 POINT(-75 27) 1 Wednesday
1 2018-01-03 41 POINT(-78.4 29) 1 Wednesday
2 2018-01-03 33 POINT(-73.9 27) 1 Wednesday
3 2018-01-03 38 POINT(-73.8 27) 1 Wednesday
4 2018-01-03 92 POINT(-79 28) 1 Wednesday

Now, we can calculate the mean number of lightning strikes for each weekday of the year. We will
use the groupby() function to do this.

[10]: # Calculate the mean count of lightning strikes for each weekday.
df[['weekday','number_of_strikes']].groupby(['weekday']).mean()

[10]: number_of_strikes
weekday
Friday 13.349972
Monday 13.152804
Saturday 12.732694
Sunday 12.324717
Thursday 13.240594

4

https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.dt.isocalendar.html
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.Series.dt.day_name.html


Tuesday 13.813599
Wednesday 13.224568

It seems that Saturday and Sunday have fewer lightning strikes on average than the other five
weekdays. We will plot the distributions of the strike counts for each day of the week. We want
each distribution to be represented as a boxplot.

We will begin by defining the order of the days, starting with Monday and ending with Sunday.
This is how the days will be ordered in the plot we create.

[11]: # Define order of days for the plot.
weekday_order = ['Monday','Tuesday', 'Wednesday',␣
↪→'Thursday','Friday','Saturday','Sunday']

Now, we will code the plot. Remember that showfliers is the parameter that controls whether or
not outliers are displayed in the plot. If we input True, outliers are included; if we input False,
outliers are left off of the box plot. Keep in mind, we aren’t deleting any outliers from the dataset
when we create this chart—we are only excluding them from the visualization.

[12]: # Create boxplots of strike counts for each day of week.
g = sns.boxplot(data=df,

x='weekday',
y='number_of_strikes',
order=weekday_order,
showfliers=False
);

g.set_title('Lightning distribution per weekday (2018)');

5



Notice that the median remains the same on all of the days of the week. As for Saturday and
Sunday, however, the distributions are both lower than they are during the rest of the week. We
also know that the mean numbers of strikes that occurred on Saturday and Sunday were lower than
on the other weekdays. Why might this be? Perhaps the aerosol particles emitted by factories and
vehicles increase the likelihood of lightning strikes. In the U.S., Saturday and Sunday are days that
many people don’t work, so there may be fewer factories operating and fewer cars on the road.
This is only speculation, but it’s one possible path for further exploration.

1.3.5 Monthly lightning strikes 2016–2018

Finally, we will examine monthly lightning strike data from 2016–2018. We will calculate the
percentage of total lightning strikes for each year that occurred in a given month. We will then
plot this data on a bar graph.

[13]: # Import 2016–2017 data
df_2 = pd.read_csv('eda_structuring_with_python_dataset2.csv')
df_2.head()

[13]: date number_of_strikes center_point_geom
0 2016-01-04 55 POINT(-83.2 21.1)
1 2016-01-04 33 POINT(-83.1 21.1)
2 2016-01-05 46 POINT(-77.5 22.1)
3 2016-01-05 28 POINT(-76.8 22.3)
4 2016-01-05 28 POINT(-77 22.1)

The data is in the same format as the 2018 data when we imported it previously. Now, we will
convert the date column to datetime.

[14]: # Convert `date` column to datetime.
df_2['date'] = pd.to_datetime(df_2['date'])

Now we can combine the 2016–2017 dataframe with the 2018 dataframe. There are several functions
that can do this. We will use concat(). Remember that the 2018 data has two added columns:
week and weekday. To simplify the results of our combined dataframe, we will drop these added
columns during the concatenation. Note that the following code doesn’t permanently modify df.
The columns drop only for this operation. You can learn more about the concat() function in the
pandas.concat documentation.

[15]: # Create a new dataframe combining 2016–2017 data with 2018 data.
union_df = pd.concat([df.drop(['weekday','week'],axis=1), df_2],␣
↪→ignore_index=True)

union_df.head()

[15]: date number_of_strikes center_point_geom
0 2018-01-03 194 POINT(-75 27)

6

https://pandas.pydata.org/docs/reference/api/pandas.concat.html


1 2018-01-03 41 POINT(-78.4 29)
2 2018-01-03 33 POINT(-73.9 27)
3 2018-01-03 38 POINT(-73.8 27)
4 2018-01-03 92 POINT(-79 28)

To help us name the bars of the bar plot, we will create three new columns that isolate the year,
month number, and month name.

[16]: # Add 3 new columns.
union_df['year'] = union_df.date.dt.year
union_df['month'] = union_df.date.dt.month
union_df['month_txt'] = union_df.date.dt.month_name()
union_df.head()

[16]: date number_of_strikes center_point_geom year month month_txt
0 2018-01-03 194 POINT(-75 27) 2018 1 January
1 2018-01-03 41 POINT(-78.4 29) 2018 1 January
2 2018-01-03 33 POINT(-73.9 27) 2018 1 January
3 2018-01-03 38 POINT(-73.8 27) 2018 1 January
4 2018-01-03 92 POINT(-79 28) 2018 1 January

Let’s check the overall lightning strike count for each year.

[17]: # Calculate total number of strikes per year
union_df[['year','number_of_strikes']].groupby(['year']).sum()

[17]: number_of_strikes
year
2016 41582229
2017 35095195
2018 44600989

Now we will calculate the percentage of total lightning strikes that occurred in a given month for
each year and assign the results to a new dataframe called lightning_by_month.

[18]: # Calculate total lightning strikes for each month of each year.
lightning_by_month = union_df.groupby(['month_txt','year']).agg(

number_of_strikes = pd.NamedAgg(column='number_of_strikes',aggfunc=sum)
).reset_index()

lightning_by_month.head()

[18]: month_txt year number_of_strikes
0 April 2016 2636427
1 April 2017 3819075
2 April 2018 1524339
3 August 2016 7250442
4 August 2017 6021702

7



We can use the agg() function to calculate the same yearly totals we found before, with 2017
having fewer strikes than the other two years.

[19]: # Calculate total lightning strikes for each year.
lightning_by_year = union_df.groupby(['year']).agg(

year_strikes = pd.NamedAgg(column='number_of_strikes',aggfunc=sum)
).reset_index()

lightning_by_year.head()

[19]: year year_strikes
0 2016 41582229
1 2017 35095195
2 2018 44600989

In our bar plot, we need to use the monthly totals to calculate percentages. For each month, we will
need the monthly total strike count and the total strike count for that year. Let’s create another
dataframe called percentage_lightning that adds a new column called year_strikes which
represents the total number of strikes for each year. We can do this using the merge() function. We
will merge the lightning_by_month dataframe with the lightning_by_year dataframe, specifying
to merge on the year column. This means that wherever the year columns contain the same
value in both dataframes, a row is created in our new dataframe with all the other columns from
both dataframes being merged. To learn more about this function, refer to the pandas.merge
documentation.

[20]: # Combine `lightning_by_month` and `lightning_by_year` dataframes into single␣
↪→dataframe.

percentage_lightning = lightning_by_month.merge(lightning_by_year,on='year')
percentage_lightning.head()

[20]: month_txt year number_of_strikes year_strikes
0 April 2016 2636427 41582229
1 August 2016 7250442 41582229
2 December 2016 316450 41582229
3 February 2016 312676 41582229
4 January 2016 313595 41582229

Now we will create a new column in our new dataframe that represents the percentage of total
lightning strikes that occurred during each month for each year. We will do this by dividing the
number_of_strikes column by the year_strikes column and multiplying the result by 100.

[21]: # Create new `percentage_lightning_per_month` column.
percentage_lightning['percentage_lightning_per_month'] = (percentage_lightning.
↪→number_of_strikes/

percentage_lightning.
↪→year_strikes * 100.0)

percentage_lightning.head()

8

https://pandas.pydata.org/docs/reference/api/pandas.merge.html
https://pandas.pydata.org/docs/reference/api/pandas.merge.html


[21]: month_txt year number_of_strikes year_strikes \
0 April 2016 2636427 41582229
1 August 2016 7250442 41582229
2 December 2016 316450 41582229
3 February 2016 312676 41582229
4 January 2016 313595 41582229

percentage_lightning_per_month
0 6.340273
1 17.436396
2 0.761022
3 0.751946
4 0.754156

Now we can plot the percentages by month in a bar graph.

[22]: plt.figure(figsize=(10,6));

month_order = ['January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December']

sns.barplot(
data = percentage_lightning,
x = 'month_txt',
y = 'percentage_lightning_per_month',
hue = 'year',
order = month_order );

plt.xlabel("Month");
plt.ylabel("% of lightning strikes");
plt.title("% of lightning strikes each Month (2016-2018)");

9



For all three years, there is a clear pattern over the course of each year. One month stands out:
August. More than one third of the lightning strikes in 2018 happened in August.

1.4 Conclusion

Congratulations! You’ve completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

You now understand how to structure data in Python and should be able to start applying this
skill to your own datasets.

10


	Annotated follow-along guide: EDA structuring with Python
	Introduction
	Overview
	Import packages and libraries
	Organize the data
	Locations with most strikes in a single day
	Locations with most days with at least one lightning strike
	Lightning strikes by day of week
	Monthly lightning strikes 2016–2018

	Conclusion


