
Annotated follow-along guide_ Dealing with missing data in
Python

January 9, 2024

1 Note: This notebook is used in the following four videos:

Work with missing data in a Python notebook � Section ??

Identify and deal with outliers in Python � Section ??

Label encoding in Python � Section ??

Input validation with Python � Section ??

Work with missing data in a Python notebook

Throughout the following exercises, you will be discovering and working with missing data on a
dataset. Before starting on this programming exercise, we strongly recommend watching the video
lecture and completing the IVQ for the associated topics.

All the information you need for solving this assignment is in this notebook, and all the code you
will be implementing will take place within this notebook.

As we move forward, you can find instructions on how to install required libraries as they arise in
this notebook. Before we begin with the exercises and analyzing the data, we need to import all
libraries and extensions required for this programming exercise. Throughout the course, we will be
using pandas, numpy, datetime, for operations, and matplotlib, pyplot and seaborn for plotting.

1.1 Objective

We will be examining lightning strike data collected by the National Oceanic and Atmospheric
Association (NOAA) for the month of August 2018. There are two datasets. The first includes five
columns:

date center_point_geom longitude latitude number_of_strikes

The second dataset contains seven columns:

date zip_code city state state_code center_point_geom number_of_strikes

The first dataset has two unique colums: longitude and latitude.

1

https://www.coursera.org/teach/go-beyond-the-numbers-translate-data-into-insight/mjPtRyfIEe2GwRLfSI7mvQ/content/item/lecture/rUXcJ/video-subtitles
https://www.coursera.org/teach/go-beyond-the-numbers-translate-data-into-insight/mjPtRyfIEe2GwRLfSI7mvQ/content/item/lecture/jadID/video-subtitles
https://www.coursera.org/teach/go-beyond-the-numbers-translate-data-into-insight/mjPtRyfIEe2GwRLfSI7mvQ/content/item/lecture/fLMxl/video-subtitles
https://www.coursera.org/teach/go-beyond-the-numbers-translate-data-into-insight/mjPtRyfIEe2GwRLfSI7mvQ/content/item/lecture/C6Mok/video-subtitles

The second dataset has four unique columns: zip_code, city, state, and state_code.
There are three columns that are common between them: date, center_point_geom, and
number_of_strikes.

We want to combine the two datasets into a single dataframe that has all of the information from
both datasets. Ideally, both datasets will have the same number of entries for the same locations
on the same dates. If they don’t, we’ll investigate which data is missing.

[1]: # Import statements
import pandas as pd
import numpy as np
import seaborn as sns
import datetime
from matplotlib import pyplot as plt

[2]: # Read in first dataset
df = pd.read_csv('eda_missing_data_dataset1.csv')

[3]: # Print the first 5 rows of dataset 1
df.head()

[3]: date center_point_geom longitude latitude number_of_strikes
0 2018-08-01 POINT(-81.6 22.6) -81.6 22.6 48
1 2018-08-01 POINT(-81.1 22.6) -81.1 22.6 32
2 2018-08-01 POINT(-80.9 22.6) -80.9 22.6 118
3 2018-08-01 POINT(-80.8 22.6) -80.8 22.6 69
4 2018-08-01 POINT(-98.4 22.8) -98.4 22.8 44

Let’s check on our dataset shape to determine number of columns and rows.

[4]: df.shape

[4]: (717530, 5)

Now we’ll read in the second dataset.

[5]: # Read in second dataset
df_zip = pd.read_csv('eda_missing_data_dataset2.csv')

[6]: # Print the first 5 rows of dataset 2
df_zip.head()

[6]: date zip_code city state \
0 2018-08-08 3281 Weare New Hampshire
1 2018-08-14 6488 Heritage Village CDP Connecticut
2 2018-08-16 97759 Sisters city, Black Butte Ranch CDP Oregon
3 2018-08-18 6776 New Milford CDP Connecticut
4 2018-08-08 1077 Southwick Massachusetts

2

state_code center_point_geom number_of_strikes
0 NH POINT(-71.7 43.1) 1
1 CT POINT(-73.2 41.5) 3
2 OR POINT(-121.4 44.3) 3
3 CT POINT(-73.4 41.6) 48
4 MA POINT(-72.8 42) 2

And check the shape…

[7]: df_zip.shape

[7]: (323700, 7)

Hmmm… This dataset has less than half the number of rows as the first one. But which ones are
they?

The first thing we’ll do to explore this discrepancy is join the two datasets into a single dataframe.
We can do this using the merge() method of the DataFrame class. For more information about the
merge() method, refer to the merge() pandas documentation.

Begin with the first dataframe (df) and call the merge() method on it. The first argument is
a positional argument that specifies the dataframe we want to merge with, known as the right
dataframe. (The dataframe you’re calling the method on is always the left dataframe.) The how
argument specifies which dataframe’s keys we’ll use to match to, and the on argument lets us define
the columns to use as keys.

A demonstration will make this easiest to understand. Refer to the Section ?? at the end of the
notebook for different examples of the merge() method.

[8]: # Left-join the two datasets
df_joined = df.merge(df_zip, how='left', on=['date','center_point_geom'])

[9]: # Print the first 5 rows of the merged data
df_joined.head()

[9]: date center_point_geom longitude latitude number_of_strikes_x \
0 2018-08-01 POINT(-81.6 22.6) -81.6 22.6 48
1 2018-08-01 POINT(-81.1 22.6) -81.1 22.6 32
2 2018-08-01 POINT(-80.9 22.6) -80.9 22.6 118
3 2018-08-01 POINT(-80.8 22.6) -80.8 22.6 69
4 2018-08-01 POINT(-98.4 22.8) -98.4 22.8 44

zip_code city state state_code number_of_strikes_y
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN

3

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html

Notice that the new dataframe has all of the columns of both original dataframes, and it has two
number_of_strikes columns that are suffixed with _x and _y. This is because the key columns from
both dataframes were the same, so they appear once in the merged dataframe. The unique columns
of each original dataframe also appear in the merged dataframe. But both original dataframes had
another column—number_of_strikes—that had the same name in both dataframes and was not
indicated as a key. Pandas handles this by adding both columns to the new dataframe.

Now we’ll check the summary on this joined dataset.

[10]: # Get descriptive statistics of the joined dataframe
df_joined.describe()

[10]: longitude latitude number_of_strikes_x zip_code \
count 717530.000000 717530.000000 717530.000000 323700.000000
mean -90.875445 33.328572 21.637081 57931.958996
std 13.648429 7.938831 48.029525 22277.327411
min -133.900000 16.600000 1.000000 1002.000000
25% -102.800000 26.900000 3.000000 38260.750000
50% -90.300000 33.200000 6.000000 59212.500000
75% -80.900000 39.400000 21.000000 78642.000000
max -43.800000 51.700000 2211.000000 99402.000000

number_of_strikes_y
count 323700.000000
mean 25.410587
std 57.421824
min 1.000000
25% 3.000000
50% 8.000000
75% 24.000000
max 2211.000000

The count information confirms that the new dataframe is missing some data.

Now let’s check how many missing state locations we have by using isnull() to create a Boolean
mask that we’ll apply to df_joined. The mask is a pandas Series object that contains True for
every row with a missing state_code value and False for every row that is not missing data in
this column. When the mask is applied to df_joined, it filters out the rows that are not missing
state_code data. (Note that using the state_code column to create this mask is an arbitrary
decision. We could have selected zip_code, city, or state instead and gotten the same results.)

[11]: # Create a new df of just the rows that are missing data
df_null_geo = df_joined[pd.isnull(df_joined.state_code)]
df_null_geo.shape

[11]: (393830, 10)

We can confirm that df_null_geo contains only the rows with the missing state_code values by
using the info() method on df_joined and comparing.

4

[12]: # Get non-null counts on merged dataframe
df_joined.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 717530 entries, 0 to 717529
Data columns (total 10 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 717530 non-null object
1 center_point_geom 717530 non-null object
2 longitude 717530 non-null float64
3 latitude 717530 non-null float64
4 number_of_strikes_x 717530 non-null int64
5 zip_code 323700 non-null float64
6 city 323700 non-null object
7 state 323700 non-null object
8 state_code 323700 non-null object
9 number_of_strikes_y 323700 non-null float64
dtypes: float64(4), int64(1), object(5)
memory usage: 60.2+ MB

If we subtract the 323,700 non-null rows in columns 5-9 of df_joined from the 717,530 non-null
rows in columns 0-4 of df_joined, we’re left with 393,830 rows that contain missing data—the
same number of rows contained in df_null_geo.

[13]: # Print the first 5 rows
df_null_geo.head()

[13]: date center_point_geom longitude latitude number_of_strikes_x \
0 2018-08-01 POINT(-81.6 22.6) -81.6 22.6 48
1 2018-08-01 POINT(-81.1 22.6) -81.1 22.6 32
2 2018-08-01 POINT(-80.9 22.6) -80.9 22.6 118
3 2018-08-01 POINT(-80.8 22.6) -80.8 22.6 69
4 2018-08-01 POINT(-98.4 22.8) -98.4 22.8 44

zip_code city state state_code number_of_strikes_y
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN

Now that we’ve merged all of our data together and isolated the rows with missing data, we can
better understand what data is missing by plotting the longitude and latitude of locations that are
missing city, state, and zip code data.

[14]: # Create new df of just latitude, longitude, and number of strikes and group by␣
↪→latitude and longitude

5

top_missing = df_null_geo[['latitude','longitude','number_of_strikes_x']
].groupby(['latitude','longitude']

).sum().
↪→sort_values('number_of_strikes_x',ascending=False).reset_index()

top_missing.head(10)

[14]: latitude longitude number_of_strikes_x
0 22.4 -84.2 3841
1 22.9 -82.9 3184
2 22.4 -84.3 2999
3 22.9 -83.0 2754
4 22.5 -84.1 2746
5 22.5 -84.2 2738
6 22.3 -81.0 2680
7 22.9 -82.4 2652
8 22.9 -82.3 2618
9 22.3 -84.3 2551

Let’s import plotly to reduce the size of the data frame as we create a geographic scatter plot.

[15]: import plotly.express as px # Be sure to import express
reduce size of db otherwise it could break
fig = px.scatter_geo(top_missing[top_missing.number_of_strikes_x>=300], #␣
↪→Input Pandas DataFrame

lat="latitude", # DataFrame column with latitude
lon="longitude", # DataFrame column with latitude
size="number_of_strikes_x") # Set to plot size as number of␣

↪→strikes
fig.update_layout(

title_text = 'Missing data', # Create a Title
)

fig.show()

It’s a nice geographic visualization, but we really don’t need the global scale. Let’s scale it down
to only the geographic area we are interested in - the United States.

Note: The following cell’s output is viewable in two ways: You can re-run this cell (and all of the
ones before it) or manually convert the notebook to “Trusted.”

[16]: import plotly.express as px # Be sure to import express
fig = px.scatter_geo(top_missing[top_missing.number_of_strikes_x>=300], #␣
↪→Input Pandas DataFrame

lat="latitude", # DataFrame column with latitude
lon="longitude", # DataFrame column with latitude
size="number_of_strikes_x") # Set to plot size as number of␣

↪→strikes
fig.update_layout(

6

title_text = 'Missing data', # Create a Title
geo_scope='usa', # Plot only the USA instead of globe

)

fig.show()

This explains why so many rows were missing state and zip code data! Most of these lightning strikes
occurred over water—the Atlantic Ocean, the Sea of Cortez, the Gulf of Mexico, the Caribbean
Sea, and the Great Lakes. Of the strikes that occurred over land, most of those were in Mexico,
the Bahamas, and Cuba—places outside of the U.S. and without U.S. zip codes. Nonetheless, some
of the missing data is from Florida and elsewhere within the United States, and we might want to
ask the database owner about this.

If you have successfully completed the material above, congratulations! You now understand han-
dling missing data in Python and should be able to start using it on your own datasets.

Bonus (not in video): df.merge() demonstration:

Begin with two dataframes:

[17]: # Define df1
data = {'planet': ['Mercury', 'Venus', 'Earth', 'Mars',

'Jupiter', 'Saturn', 'Uranus', 'Neptune'],
'radius_km': [2440, 6052, 6371, 3390, 69911, 58232,

25362, 24622],
'moons': [0, 0, 1, 2, 80, 83, 27, 14]
}

df1 = pd.DataFrame(data)
df1

[17]: planet radius_km moons
0 Mercury 2440 0
1 Venus 6052 0
2 Earth 6371 1
3 Mars 3390 2
4 Jupiter 69911 80
5 Saturn 58232 83
6 Uranus 25362 27
7 Neptune 24622 14

[18]: # Define df2
data = {'planet': ['Mercury', 'Venus', 'Earth', 'Meztli', 'Janssen'],

'radius_km': [2440, 6052, 6371, 48654, 11959],
'life?': ['no', 'no', 'yes', 'no', 'yes'],
}

df2 = pd.DataFrame(data)
df2

7

[18]: planet radius_km life?
0 Mercury 2440 no
1 Venus 6052 no
2 Earth 6371 yes
3 Meztli 48654 no
4 Janssen 11959 yes

Now we’ll merge the two dataframes on the ['planet', 'radius_km'] columns. Try running the
below cell with each of the following arguments for the how keyword: 'left', 'right', 'inner',
and 'outer'. Notice how each argument changes the result.

Feel free to change the columns specified by the on argument too!

[19]: merged = df1.merge(df2, how='left', on=['planet', 'radius_km'])
merged

[19]: planet radius_km moons life?
0 Mercury 2440 0 no
1 Venus 6052 0 no
2 Earth 6371 1 yes
3 Mars 3390 2 NaN
4 Jupiter 69911 80 NaN
5 Saturn 58232 83 NaN
6 Uranus 25362 27 NaN
7 Neptune 24622 14 NaN

Identify and deal with outliers

Throughout the following exercises, you will learn to find and deal with outliers in a dataset.
Before starting on this programming exercise, we strongly recommend watching the video lecture
and completing the IVQ for the associated topics.

All the information you need for solving this assignment is in this notebook, and all the code you
will be implementing will take place within this notebook.

As we move forward, you can find instructions on how to install required libraries as they arise in
this notebook. Before we begin with the exercises and analyzing the data, we need to import all
libraries and extensions required for this programming exercise. Throughout the course, we will be
using pandas, numpy, datetime, for operations, and matplotlib, pyplot and seaborn for plotting.

1.2 Objective

We will be examining lightning strike data collected by the National Oceanic and Atmospheric
Association (NOAA) from 1987 through 2020. Because this would be many millions of rows to
read into the notebook, we’ve preprocessed the data so it contains just the year and the number of
strikes.

We will examine the range of total lightning strike counts for each year and identify outliers. Then
we will plot the yearly totals on a scatterplot.

8

[20]: import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns

[21]: # Read in data
df = pd.read_csv('eda_outliers_dataset1.csv')

[22]: # Print first 10 rows
df.head(10)

[22]: year number_of_strikes
0 2020 15620068
1 2019 209166
2 2018 44600989
3 2017 35095195
4 2016 41582229
5 2015 37894191
6 2014 34919173
7 2013 27600898
8 2012 28807552
9 2011 31392058

Next, let’s convert the number of strikes value to a more readable format on the graph (e.g.,
converting 100,000 to 100K, 3,000,000 to 3M, and so on).

[23]: def readable_numbers(x):
"""takes a large number and formats it into K,M to make it more readable"""
if x >= 1e6:

s = '{:1.1f}M'.format(x*1e-6)
else:

s = '{:1.0f}K'.format(x*1e-3)
return s

Use the readable_numbers() function to create a new column
df['number_of_strikes_readable']=df['number_of_strikes'].apply(readable_numbers)

[24]: df.head(10)

[24]: year number_of_strikes number_of_strikes_readable
0 2020 15620068 15.6M
1 2019 209166 209K
2 2018 44600989 44.6M
3 2017 35095195 35.1M
4 2016 41582229 41.6M
5 2015 37894191 37.9M
6 2014 34919173 34.9M

9

7 2013 27600898 27.6M
8 2012 28807552 28.8M
9 2011 31392058 31.4M

[25]: print("Mean:" + readable_numbers(np.mean(df['number_of_strikes'])))
print("Median:" + readable_numbers(np.median(df['number_of_strikes'])))

Mean:26.8M
Median:28.3M

A boxplot can help to visually break down the data into percentiles / quartiles, which are important
summary statistics. The shaded center of the box represents the middle 50th percentile of the data
points. This is the interquartile range, or IQR.

The boxplot “whiskers” extend 1.5x the IQR by default.

[26]: # Create boxplot
box = sns.boxplot(x=df['number_of_strikes'])
g = plt.gca()
box.set_xticklabels(np.array([readable_numbers(x) for x in g.get_xticks()]))
plt.xlabel('Number of strikes')
plt.title('Yearly number of lightning strikes');

The points to the left of the left whisker are outliers. Any observations that are more than 1.5 IQR
below Q1 or more than 1.5 IQR above Q3 are considered outliers.

10

One important point for every data professional: do not assume an outlier is erroneous unless there
is an explanation or reason to do so.

Let’s define our IQR, upper, and lower limit.

[27]: # Calculate 25th percentile of annual strikes
percentile25 = df['number_of_strikes'].quantile(0.25)

Calculate 75th percentile of annual strikes
percentile75 = df['number_of_strikes'].quantile(0.75)

Calculate interquartile range
iqr = percentile75 - percentile25

Calculate upper and lower thresholds for outliers
upper_limit = percentile75 + 1.5 * iqr
lower_limit = percentile25 - 1.5 * iqr

print('Lower limit is: '+ readable_numbers(lower_limit))

Lower limit is: 8.6M

Now we can use a Boolean mask to select only the rows of the dataframe where the number of
strikes is less than the lower limit we calculated above. These rows are the outliers on the low end.

[28]: # Isolate outliers on low end
df[df['number_of_strikes'] < lower_limit]

[28]: year number_of_strikes number_of_strikes_readable
1 2019 209166 209K
33 1987 7378836 7.4M

Let’s get a visual of all of the data points with the outlier values colored red.

[29]: def addlabels(x,y):
for i in range(len(x)):

plt.text(x[i]-0.5, y[i]+500000, s=readable_numbers(y[i]))

colors = np.where(df['number_of_strikes'] < lower_limit, 'r', 'b')

fig, ax = plt.subplots(figsize=(16,8))
ax.scatter(df['year'], df['number_of_strikes'],c=colors)
ax.set_xlabel('Year')
ax.set_ylabel('Number of strikes')
ax.set_title('Number of lightning strikes by year')
addlabels(df['year'], df['number_of_strikes'])
for tick in ax.get_xticklabels():

tick.set_rotation(45)
plt.show()

11

1.2.1 Investigating the outliers 2019 and 1987

Let’s examine the two outlier years a bit more closely. In the section above, we used a preprocessed
dataset that didn’t include a lot of the information that we’re accustomed to having in this data.
In order to further investigate the outlier years, we’ll need more information, so we’re going to
import data from these years specifically.

Import data for 2019
[30]: df_2019 = pd.read_csv('eda_outliers_dataset2.csv')

[31]: df_2019.head()

[31]: date number_of_strikes center_point_geom
0 2019-12-01 1 POINT(-79.7 35.3)
1 2019-12-01 1 POINT(-84.7 39.3)
2 2019-12-01 1 POINT(-83.4 38.9)
3 2019-12-01 1 POINT(-71.5 35.2)
4 2019-12-01 1 POINT(-87.8 41.6)

First, we’ll convert the date column to datetime. This will enable us to extract two new columns:
month and month_txt. Then, we’ll sort the data by month and month_txt, sum it, and sort the
values.

[32]: # Convert `date` column to datetime
df_2019['date']= pd.to_datetime(df_2019['date'])

12

Create 2 new columns
df_2019['month'] = df_2019['date'].dt.month
df_2019['month_txt'] = df_2019['date'].dt.month_name().str.slice(stop=3)

Group by `month` and `month_txt`, sum it, and sort. Assign result to new df
df_2019_by_month = df_2019.groupby(['month','month_txt']).sum().
↪→sort_values('month', ascending=True).head(12).reset_index()

df_2019_by_month

[32]: month month_txt number_of_strikes
0 12 Dec 209166

2019 appears to have data only for the month of December. The likelihood of there not being any
lightning from January to November 2019 is ~0. This appears to be a case of missing data. We
should probably exclude 2019 from the analysis (for most use cases).

Import data for 1987 Now let’s inspect the data from the other outlier year, 1987.

[33]: # Read in 1987 data
df_1987 = pd.read_csv('eda_outliers_dataset3.csv')

In this code block we will do the same datetime conversions and groupings we did for the other
datasets.

[34]: # Convert `date` column to datetime
df_1987['date'] = pd.to_datetime(df_1987['date'])

Create 2 new columns
df_1987['month'] = df_1987['date'].dt.month
df_1987['month_txt'] = df_1987['date'].dt.month_name().str.slice(stop=3)

Group by `month` and `month_txt`, sum it, and sort. Assign result to new df
df_1987_by_month = df_1987.groupby(['month','month_txt']).sum().
↪→sort_values('month', ascending=True).head(12).reset_index()

df_1987_by_month

[34]: month month_txt number_of_strikes
0 1 Jan 23044
1 2 Feb 61020
2 3 Mar 117877
3 4 Apr 157890
4 5 May 700910
5 6 Jun 1064166
6 7 Jul 2077619
7 8 Aug 2001899
8 9 Sep 869833
9 10 Oct 105627

13

10 11 Nov 155290
11 12 Dec 43661

1987 has data for every month of the year. Hence, this outlier should be treated differently than
2019, which is missing data.

Finally, let’s re-run the mean and median after removing the outliers. Our final takeaway from our
lesson on outliers is that outliers significantly affect the dataset’s mean, but do not significantly
affect the median.

To remove the outliers, we’ll use a Boolean mask to create a new dataframe that contains only the
rows in the original dataframe where the number of strikes >= the lower limit we calculated above.

[35]: # Create new df that removes outliers
df_without_outliers = df[df['number_of_strikes'] >= lower_limit]

Recalculate mean and median values on data without outliers
print("Mean:" + readable_numbers(np.
↪→mean(df_without_outliers['number_of_strikes'])))

print("Median:" + readable_numbers(np.
↪→median(df_without_outliers['number_of_strikes'])))

Mean:28.2M
Median:28.8M

Both the mean and the median changed, but the mean much more so. It is clear that outlier values
can affect the distributions of the data and the conclusions that can be drawn from them.

If you have successfully completed the material above, congratulations! You now understand dis-
covering in Python and should be able to start using it on your own datasets.

Label Encoding

Throughout the following exercises, you will practice label encoding in Python. Before starting on
this programming exercise, we strongly recommend watching the video lecture and completing the
IVQ for the associated topics.

As we move forward, you can find instructions on how to install required libraries as they arise in
this notebook. Before we begin with the exercises and analyzing the data, we need to import all
libraries and extensions required for this programming exercise. Throughout the course, we will be
using pandas for operations, and matplotlib and seaborn for plotting.

1.3 Objective

We will be examining monthly lightning strike data collected by the National Oceanic and Atmo-
spheric Association (NOAA) for 2016–2018. The dataset includes three columns:

date number_of_strikes center_point_geom

14

The objective is to assign the monthly number of strikes to the following categories: mild, scattered,
heavy, or severe. Then we will create a heatmap of the three years so we can get a high-level
understanding of monthly lightning severity from a simple diagram.

[36]: import datetime
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

[37]: # Read in the data
df = pd.read_csv('eda_label_encoding_dataset.csv')

[38]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10479003 entries, 0 to 10479002
Data columns (total 3 columns):
Column Dtype
--- ------ -----
0 date object
1 number_of_strikes int64
2 center_point_geom object
dtypes: int64(1), object(2)
memory usage: 239.8+ MB

1.3.1 Create a categorical variable strike_level

Begin by converting the date column to datetime. Then we’ll create a new month column that
contains the first three letters of each month.

[39]: # Convert `date` column to datetime
df['date'] = pd.to_datetime(df['date'])

Create new `month` column
df['month'] = df['date'].dt.month_name().str.slice(stop=3)

[40]: df.head()

[40]: date number_of_strikes center_point_geom month
0 2016-08-05 16 POINT(-101.5 24.7) Aug
1 2016-08-05 16 POINT(-85 34.3) Aug
2 2016-08-05 16 POINT(-89 41.4) Aug
3 2016-08-05 16 POINT(-89.8 30.7) Aug
4 2016-08-05 16 POINT(-86.2 37.9) Aug

Next, we’ll encode the months as categorical information. This allows us to specifically designate
them as categories that adhere to a specific order, which is helpful when we plot them later. We’ll

15

also create a new year column. Then we’ll group the data by year and month, sum the remaining
columns, and assign the results to a new dataframe.

[41]: # Create categorical designations
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',␣
↪→'Nov', 'Dec']

Encode `month` column as categoricals
df['month'] = pd.Categorical(df['month'], categories=months, ordered=True)

Create `year` column by extracting the year info from the datetime object
df['year'] = df['date'].dt.strftime('%Y')

Create a new df of month, year, total strikes
df_by_month = df.groupby(['year', 'month']).sum(numeric_only=True).reset_index()
df_by_month.head()

NOTE: In pandas v.2.X+ you must set 'numeric_only=True' or else the sum()␣
↪→function will throw an error

[41]: year month number_of_strikes
0 2016 Jan 313595
1 2016 Feb 312676
2 2016 Mar 2057527
3 2016 Apr 2636427
4 2016 May 5800500

Now we’ll create a new column called strike_level that contains a categorical variable represent-
ing the lightning strikes for each month as mild, scattered, heavy, or severe. The pd.qcut pandas
function makes this easy. We just input the column to be categorized, the number of quantiles to
sort the data into, and how we want to name each quantile. For more information on this function,
refer to the pandas qcut() documentation.

[42]: # Create a new column that categorizes number_of_strikes into 1 of 4 categories
df_by_month['strike_level'] = pd.qcut(

df_by_month['number_of_strikes'],
4,
labels = ['Mild', 'Scattered', 'Heavy', 'Severe'])

df_by_month.head()

[42]: year month number_of_strikes strike_level
0 2016 Jan 313595 Mild
1 2016 Feb 312676 Mild
2 2016 Mar 2057527 Scattered
3 2016 Apr 2636427 Heavy
4 2016 May 5800500 Severe

16

https://pandas.pydata.org/docs/reference/api/pandas.qcut.html

1.3.2 Encode strike_level into numerical values

Now that we have a categorical strike_level column, we can extract a numerical code from it
using .cat.codes and assign this number to a new column.

[43]: # Create new column representing numerical value of strike level
df_by_month['strike_level_code'] = df_by_month['strike_level'].cat.codes
df_by_month.head()

[43]: year month number_of_strikes strike_level strike_level_code
0 2016 Jan 313595 Mild 0
1 2016 Feb 312676 Mild 0
2 2016 Mar 2057527 Scattered 1
3 2016 Apr 2636427 Heavy 2
4 2016 May 5800500 Severe 3

We can also create binary “dummy” variables from the strike_level column. This is a useful
tool if we’d like to pass the categorical variable into a model. To do this, we could use the function
pd.get_dummies(). Note that this is just to demonstrate the functionality of pd.get_dummies().
Simply calling the function as we do below will not convert the data unless we reassigned the result
back to a dataframe.

pd.get_dummies(df['column']) � df unchanged
df = pd.get_dummies(df['column']) � df changed

[44]: pd.get_dummies(df_by_month['strike_level'])

[44]: Mild Scattered Heavy Severe
0 1 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 0 0 0 1
6 0 0 0 1
7 0 0 0 1
8 0 0 1 0
9 0 1 0 0
10 1 0 0 0
11 1 0 0 0
12 0 1 0 0
13 1 0 0 0
14 0 1 0 0
15 0 0 1 0
16 0 0 1 0
17 0 0 1 0
18 0 0 0 1
19 0 0 0 1

17

20 0 0 1 0
21 0 1 0 0
22 1 0 0 0
23 1 0 0 0
24 0 1 0 0
25 0 0 1 0
26 0 1 0 0
27 0 1 0 0
28 0 0 1 0
29 0 0 0 1
30 0 0 0 1
31 0 0 0 1
32 0 0 1 0
33 0 1 0 0
34 1 0 0 0
35 1 0 0 0

We don’t need to create dummy variables for our heatmap, so let’s continue without converting the
dataframe.

1.3.3 Create a heatmap of number of strikes per month

We want our heatmap to have the months on the x-axis and the years on the y-axis, and the color
gradient should represent the severity (mild, scattered, heavy, severe) of lightning for each month.
A simple way of preparing the data for the heatmap is to pivot it so the rows are years, columns
are months, and the values are the numeric code of the lightning severity.

We can do this with the df.pivot() method. It accepts arguments for index, columns, and
values, which we’ll specify as described. For more information on the df.pivot() method, refer
to the pandas pivot() method documentation.

[45]: # Create new df that pivots the data
df_by_month_plot = df_by_month.pivot(index='year', columns='month',␣
↪→values='strike_level_code')

df_by_month_plot.head()

[45]: month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
year
2016 0 0 1 2 3 3 3 3 2 1 0 0
2017 1 0 1 2 2 2 3 3 2 1 0 0
2018 1 2 1 1 2 3 3 3 2 1 0 0

At last we can plot the heatmap! We’ll use seaborn’s heatmap() function for this.

[46]: ax = sns.heatmap(df_by_month_plot, cmap = 'Blues')
colorbar = ax.collections[0].colorbar
colorbar.set_ticks([0, 1, 2, 3])

18

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pivot.html

colorbar.set_ticklabels(['Mild', 'Scattered', 'Heavy', 'Severe'])
plt.show()

The heatmap indicates that for all three years, the most lightning strikes occurred during the
summer months. A heatmap is an easily digestable way to understand a lot of data in a single
graphic.

If you have successfully completed the material above, congratulations! You now understand how
to perform label encoding in Python and should be able to start using these skills on your own
datasets.

Input Validation

Throughout the following exercises, you will be practicing input validation in Python. Before
starting on this programming exercise, we strongly recommend watching the video lecture and
completing the IVQ for the associated topics.

As we move forward, you can find instructions on how to install required libraries as they arise in
this notebook. Before we begin with the exercises and analyzing the data, we need to import all
libraries and extensions required for this programming exercise. Throughout the course, we will be
using pandas for operations, and matplotlib and seaborn for plotting.

1.4 Objective

We will be examining monthly lightning strike data collected by the National Oceanic and Atmo-
spheric Association (NOAA) for 2018. The dataset includes five columns:

19

date number_of_strikes center_point_geom longitude latitude

The objective is to inspect the data and validate the quality of its contents. We will check for:

• Null values
• Missing dates
• A plausible range of daily lightning strikes in a location
• A geographical range that aligns with expectation

[47]: import matplotlib.pyplot as plt
import pandas as pd
import plotly.express as px
import seaborn as sns

[48]: df = pd.read_csv('eda_input_validation_joining_dataset1.csv')

[49]: df.head()

[49]: date number_of_strikes center_point_geom longitude latitude
0 2018-01-03 194 POINT(-75 27) -75.0 27.0
1 2018-01-03 41 POINT(-78.4 29) -78.4 29.0
2 2018-01-03 33 POINT(-73.9 27) -73.9 27.0
3 2018-01-03 38 POINT(-73.8 27) -73.8 27.0
4 2018-01-03 92 POINT(-79 28) -79.0 28.0

[50]: # Display the data types of the columns
print(df.dtypes)

date object
number_of_strikes int64
center_point_geom object
longitude float64
latitude float64
dtype: object

The date column is currently a string. Let’s parse it into a datetime column.

[51]: # Convert `date` column to datetime
df['date'] = pd.to_datetime(df['date'])

Now we’ll do some data validation. We begin by counting the number of missing values in each
column.

[52]: df.isnull().sum()

[52]: date 0
number_of_strikes 0
center_point_geom 0

20

longitude 0
latitude 0
dtype: int64

Check ranges for all variables.

[53]: df.describe(include = 'all')

[53]: date number_of_strikes center_point_geom \
count 3401012 3.401012e+06 3401012
unique 357 NaN 170855
top 2018-09-01 00:00:00 NaN POINT(-81.5 22.5)
freq 31773 NaN 108
first 2018-01-01 00:00:00 NaN NaN
last 2018-12-31 00:00:00 NaN NaN
mean NaN 1.311403e+01 NaN
std NaN 3.212099e+01 NaN
min NaN 1.000000e+00 NaN
25% NaN 2.000000e+00 NaN
50% NaN 4.000000e+00 NaN
75% NaN 1.200000e+01 NaN
max NaN 2.211000e+03 NaN

longitude latitude
count 3.401012e+06 3.401012e+06
unique NaN NaN
top NaN NaN
freq NaN NaN
first NaN NaN
last NaN NaN
mean -9.081778e+01 3.374688e+01
std 1.296593e+01 7.838555e+00
min -1.418000e+02 1.660000e+01
25% -1.008000e+02 2.760000e+01
50% -9.070000e+01 3.350000e+01
75% -8.130000e+01 3.970000e+01
max -4.320000e+01 5.170000e+01

Notice that the number of unique dates in the date column is 357. This means that eight days of
2018 are missing from the data, because 2018 had 365 days.

1.4.1 Validate date column

We need a way to easily determine which dates are missing. We can do this by comparing all of
the actual dates in 2018 to the dates we have in our date column. The function pd.date_range()
will create a datetime index of all dates between a start and end date (inclusive) that we’ll give
as arguments. This is a very useful function that can be used for more than just days. For more

21

information about pd.date_range(), refer to the pandas date_range() function documentation.

Once we have the datetime index object of all dates in 2018, we’ll compare its contents to the
dates we have in the date column. The index.difference() method is used on index objects. Its
argument is an index or array that you want to compare with the one the method is being applied
to. It returns the set difference of the two indices—the values that are in the original index but
not in the one given in the argument.

[54]: # Create datetime index of every date in 2018
full_date_range = pd.date_range(start='2018-01-01', end='2018-12-31')

Determine which values are in `full_date_range` but not in `df['date']`
full_date_range.difference(df['date'])

[54]: DatetimeIndex(['2018-06-19', '2018-06-20', '2018-06-21', '2018-06-22',
'2018-09-18', '2018-09-19', '2018-12-01', '2018-12-02'],
dtype='datetime64[ns]', freq=None)

We knew that the data was missing eight dates, but now we know which specific dates they are.

1.4.2 Validate number_of_strikes column

Let’s make a boxplot to better understand the range of values in the data.

[55]: sns.boxplot(y = df['number_of_strikes'])

[55]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2062f56ed0>

22

https://pandas.pydata.org/docs/reference/api/pandas.date_range.html

This is not a very useful visualization because the box of the interquartile range is squished at the
very bottom. This is because the upper outliers are taking up all the space. Let’s do it again, only
this time we’ll set showfliers=False so outliers are not included.

[56]: sns.boxplot(y = df['number_of_strikes'], showfliers=False)

[56]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20542926d0>

Much better! The interquartile range is approximately 2–12 strikes. But we know from the previous
boxplot that there are many outlier days that have hundreds or even thousands of strikes. This
exercise just helped us make sure that most of the dates in our data had plausible values for number
of strikes.

1.4.3 Validate latitude and longitude columns

Finally, we’ll create a scatterplot of all the geographical coordinates that had lightning strikes in
2018. We’ll plot the points on a map to make sure the points in the data are relevant and not in
unexpected locations. Because this can be a computationally intensive process, we’ll prevent redun-
dant computation by dropping rows that have the same values in their latitude and longitude
columns. We can do this because the purpose here is to examine locations that had lightning
strikes, but it doesn’t matter how many strikes they had or when.

[57]: # Create new df only of unique latitude and longitude combinations
df_points = df[['latitude', 'longitude']].drop_duplicates()
df_points.head()

23

[57]: latitude longitude
0 27.0 -75.0
1 29.0 -78.4
2 27.0 -73.9
3 27.0 -73.8
4 28.0 -79.0

Note: The following cell’s output is viewable in two ways: You can re-run this cell, or manually
convert the notebook to “Trusted.”

[58]: p = px.scatter_geo(df_points, lat = 'latitude', lon = 'longitude')
p.show()

The plot indicates that the lightning strikes occurred primarily in the United States, but there
were also many strikes in southern Canada, Mexico, and the Caribbean. We can click and move
the map, and also zoom in for better resolution of the strike points.

Congratulations! You’ve completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

You now have a better understanding of different ways to examine a dataset and validate the quality
of its contents.

24

	Note: This notebook is used in the following four videos:
	Objective
	Objective
	Investigating the outliers 2019 and 1987

	Objective
	Create a categorical variable strike_level
	Encode strike_level into numerical values
	Create a heatmap of number of strikes per month

	Objective
	Validate date column
	Validate number_of_strikes column
	Validate latitude and longitude columns

