
Activity_Work with strings in Python

January 14, 2024

1 Activity: Work with strings in Python

1.1 Introduction

Security analysts work with a lot of string data. For example, some security analysts work on
creating and updating IDs such as employee IDs and device IDs, which are commonly represented
as strings. As another example, certain network activity will be stored as string data. Becoming
comfortable working with strings in Python is essential for the work of a security analyst.

In this lab, you’ll practice creating Python code and working with strings. You’ll work with an
employee ID, a device ID, and a URL, all represented as string data.

Tips for completing this lab

As you navigate this lab, keep the following tips in mind:

• ### YOUR CODE HERE ### indicates where you should write code. Be sure to replace that
with your own code before running the code cell.

• Feel free to open the hints for additional guidance as you work on each task.
• To enter your answer to a question, double-click the markdown cell to edit. Be sure to replace

the “[Double-click to enter your responses here.]” with your own answer.
• You can save your work manually by clicking File and then Save in the menu bar at the top

of the notebook.
• You can download your work locally by clicking File and then Download and then specifying

your preferred file format in the menu bar at the top of the notebook.

1.2 Scenario

You’re working as a security analyst, and you are responsible for writing programs in Python to au-
tomate updating employee IDs, extracting characters from a device ID, and extracting components
from a URL.

1.3 Task 1

In your organization, employee IDs are currently either four digits or five digits in length. In
this task, you’re given a four-digit numeric employee ID stored in a variable called employee_id.
Convert this to a string format and store the result in the same variable. Later, you’ll update this
employee ID string so that it complies with a new standardized format.

1



Complete the following code. Be sure to replace the ### YOUR CODE HERE ### with your own code
before you run the following cell.

[ ]: # Assign `employee_id` to a four digit number as an initial value

employee_id = 4186

# Display the data type of `employee_id`

print(type(employee_id))

# Reassign `employee_id` to the same value but in the form of a string

employee_id = ### YOUR CODE HERE ###

# Display the data type of `employee_id` now

print(type(employee_id))

Hint 1

Use the str() function in Python to convert the initial value of the employee_id variable into a
string.

Hint 2

Pass employee_id into the str() function.

Question 1 What do you observe about the data type of employee_id the first time
it’s displayed? What do you observe about the data type of employee_id the second
time it’s displayed (after the variable is reassigned)?

[Double-click to enter your responses here.]

1.4 Task 2

Imagine that you have just been informed of a new criteria for employee IDs. They must all be five
digits long for standardization purposes.

In this task, you will write a conditional statement that displays a message if the length of the
employee ID is less than five digits.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[2]: # Assign `employee_id` to a four digit number as an initial value

employee_id = 4186

# Reassign `employee_id` to the same value but in the form of a string

2



employee_id = str(employee_id)

# Conditional statement that displays a message if the length of `employee_id`␣
↪→is less than five digits

if len(employee_id) < 5:
print("This employee ID has less than five digits. It does not meet length␣

↪→requirements.")

This employee ID has less than five digits. It does not meet length
requirements.

Hint 1

The len() function in Python can be used to get the length of employee_id.

Hint 2

Start the conditional statement with the if keyword.

Hint 3

To write the condition in the conditional statement, use the < comparison operator to check whether
the length of employee_id is less than 5. Make sure to place the condition between the if and the
:.

1.5 Task 3

In this task, you’ll build upon the previous code. If an employee ID is only four digits, you’ll use
concatenation to create a five-digit employee ID number.

Concatenation is a process that allows you to merge strings together. The addition operator (+) in
Python allows you to concatenate two strings.

Write an if statement that evaluates whether the length of employee_id is less than 5. When the
condition evaluates to True, reassign employee_id by concatenating "E" in front of the four-digit
employee ID to create a five character employee ID. Then, display employee_id again. Be sure to
replace each ### YOUR CODE HERE ### with your own code before you run the following cell.

[3]: # Assign `employee_id` to a four digit number as an initial value

employee_id = 4186

# Reassign `employee_id` to the same value but in the form of a string

employee_id = str(employee_id)

# Display the `employee_id` as it currently stands

3



print(employee_id)

# Conditional statement that updates the `employee_id` if its length is less␣
↪→than 5 digits

if len(employee_id) < 5:
employee_id = "E" + employee_id

# Display the `employee_id` after the update

### YOUR CODE HERE ###
print(employee_id)

4186
E4186

Hint 1

To complete the header of the conditional statement, use the if keyword to start, the len()
function to get the length of employee_id, and the < comparison operator to check whether the
length is less than 5. Make sure to write this before the :.

Hint 2

Use the = assignment operator to update the value of the employee_id variable. Update the value
of employee_id to the concatenation of "E" with the variable’s current value. The "E" should
appear to the left of the current value.

Hint 3

Use the print() function to display employee_id after the update.

1.6 Task 4

Now you’ll move on to the next part of your task. Imagine that the characters in a device ID convey
technical information about the device. You’ll need to extract characters in specific positions from
the device ID. Start off by extracting the fourth character.

The variable device_id represents a device ID containing alphanumeric characters; it’s already
stored as a string.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[4]: # Assign `device_id` to a string that contains alphanumeric characters

device_id = "r262c36"

# Extract the fourth character in `device_id` and display it

4



print(device_id[3])

2

Hint 1

Use a pair of square brackets, passing in the appropriate index value, in order to extract the fourth
character in device_id.

Hint 2

In Python, index values start at 0.

Hint 3

Given that index values start at 0 in Python, an index value of 3 corresponds to the fourth character
in a sequence.

1.7 Task 5

Now you will also need to extract the first through the third characters in the device ID. So take
a slice of the device ID. You can achieve this using bracket notation in Python. Then, display the
slice to examine the result.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[6]: # Assign `device_id` to a string that contains alphanumeric characters

device_id = "r262c36"

# Extract the first through the third characters in `device_id` and display the␣
↪→result

print(device_id[:3])

r26

Hint 1

Use a pair of square brackets, passing in the appropriate index values, in order to extract the first
through the third characters in device_id.

Inside the square brackets, use a : to separate the first index value (the starting index value) and
second index value (ending index value).

Hint 2

Keep in mind that the second index value passed into bracket notation is exclusive. In other words,
the index value passed into the square brackets after the : is not included when the string is sliced.
The resulting slice will not include the character at that index.

5



Hint 3

Recall that the second index value passed into bracket notation is exclusive and indexing in Python
starts at 0. The first index value should be 0 and the second index value should be 3, in order to
extract the first through the third characters in device_id.

1.8 Task 6

You’ll now proceed to the last part of your task. This involves extracting components of a URL.

You’ll work with string indices to display various components of a URL that’s stored in the URL
variable. First, you’ll extract and display the protocol of the URL and the :// characters that
follow it using string slicing. Consider that the protocol is in the secure format of https when
determining the indices for your slice.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[8]: # Assign `url` to a specific URL

url = "https://exampleURL1.com"

# Extract the protocol of `url` along with the syntax following it, display the␣
↪→result

### YOUR CODE HERE ###
print(url[:8])

https://

Hint 1

Note that https:// is eight characters long.

Hint 2

Use a pair of square brackets to slice the string stored in url, passing in two index values separated
by :. Keep in mind that the second index value is exclusive and that indexing in Python starts at
0.

Hint 3

Use the print() function to display the slice.

1.9 Task 7

Later in this lab, you’ll extract the domain extension. To prepare for this, use the .index() method
to identify the index where the domain extension .com is located in the given URL.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

6



[9]: # Assign `url` to a specific URL

url = "https://exampleURL1.com"

# Display the index where the domain extension ".com" is located in `url`

print(url.index(".com"))

19

Hint 1

Apply the .index() method to url in order to get the appropriate index. The .index() method
takes in a substring, and if that substring is located in the original string, it returns the index
where that substring starts to occur in the original string.

Hint 2

Call url.index(), and inside the parentheses, pass in the targeted domain extension as a string.

1.10 Task 8

It’s a good idea to save important data in variables when programming. This allows for quick and
easy tracking and reuse of information.

Store the output of the .index() method in a variable called ind, which is short for index. This
index represents the position where the domain extension ".com" starts in the url. Be sure to
replace the ### YOUR CODE HERE ### with your own code before you run the following cell. Note
that running this cell will not produce an output.

[10]: # Assign `url` to a specific URL

url = "https://exampleURL1.com"

# Assign `ind` to the output of applying `.index()` to `url` in order to␣
↪→extract the starting index of ".com" in `url`

ind = url.index(".com")

Hint 1

To assign the extracted index to the ind variable, use the .index() method to the right of the =
assignment operator.

Hint 2

Call url.index(), and inside the parantheses, pass in the targeted domain extension as a string.
Be sure to place this to the right of the = assignment operator, so that the result is assigned to ind.

7



1.11 Task 9

You can use string slicing to also extract the domain extension of a URL. To do so, you can create
a slice. The starting index should be the ind variable. This contains the index where the domain
extension begins. The ending index should be ind + 4 (since ".com" is four characters long).
Sometimes, like in this situation, it’s easier to express the ending index in relation to the starting
index. Examine the following code, run it as is, and observe the output.

[11]: # Assign `url` to a specific URL

url = "https://exampleURL1.com"

# Assign `ind` to the output of applying `.index()` to `url` in order to␣
↪→extract the starting index of ".com" in `url`

ind = url.index(".com")

# Extract the domain extension in `url` and display it

print(url[ind:ind+4])

.com

Question 2 What does this code output and why?

[Double-click to enter your responses here.]

1.12 Task 10

Finally, extract the website name from the given URL using string slicing and the ind variable that
you defined earlier. In the given URL, the website name is "exampleURL1". Be sure to replace the
### YOUR CODE HERE ### with your own code before you run the following cell.

[14]: # Assign `url` to a specific URL

url = "https://exampleURL1.com"

# Assign `ind` to the output of applying `.index()` to `url` in order to␣
↪→extract the starting index of ".com" in `url`

ind = url.index(".com")

# Extract the website name in `url` and display it

print(url[8:ind])

8



exampleURL1

Hint 1

In order to extract the website name in the given URL, use a pair of square brackets to create a
slice of url, passing in a start index and an ending index, separating the two with :.

Hint 2

The starting index should be set to 8, since this is the position after the protocol and the ://
syntax ends and where the website name begins. The ending index should be set to the position
where the .com domain name begins.

1.13 Conclusion

What are your key takeaways from this lab?

[Double-click to enter your responses here.]

9


	Activity: Work with strings in Python
	Introduction
	Scenario
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Task 9
	Task 10
	Conclusion


