
Activity_Create more functions

January 11, 2024

1 Activity: Create more functions

1.1 Introduction

Built-in functions are functions that exist within Python and can be called directly. They help
analysts efficiently complete tasks. Python also supports user-defined functions. These are functions
that analysts write for their specific needs.

For example, patterns in login attempts could reveal suspicious activity. Python functions can
help analysts work efficiently with lists of login attempts. Both built-in functions and user-defined
functions in Python can help security analysts analyze login attempts.

In this lab, you’ll use built-in functions to work with a list of failed login attempts per month to
prepare it for further analysis, and you’ll define a function that compares the user’s login attempts
for the current day to their average number of login attempts.

Tips for completing this lab

As you navigate this lab, keep the following tips in mind:

• ### YOUR CODE HERE ### indicates where you should write code. Be sure to replace this
with your own code before running the code cell.

• Feel free to open the hints for additional guidance as you work on each task.
• To enter your answer to a question, double-click the markdown cell to edit. Be sure to replace

the “[Double-click to enter your responses here.]” with your own answer.
• You can save your work manually by clicking File and then Save in the menu bar at the top

of the notebook.
• You can download your work locally by clicking File and then Download and then specifying

your preferred file format in the menu bar at the top of the notebook.

1.2 Scenario

In your work as a security analyst, you’re responsible for working with a list that contains the
number of failed attempts that occurred each month. You’ll identify any patterns that might
indicate malicious activity. You’re also responsible for defining a function that compares the logins
for the current day to an average and improving it by adding a return statement.

1

1.3 Task 1

In your work as an analyst, imagine that you’re provided a list of the number of failed login attempts
per month, as follows:

119, 101, 99, 91, 92, 105, 108, 85, 88, 90, 264, and 223.

This list is organized in chronological order of months (January, February, March, April, May, June,
July, August, September, October, November, and December).

This list is stored in a variable named failed_login_list.

In this task, use a built-in Python function to order the list. You’ll pass the call to the function
that sorts the list directly into the print() function. This will allow you to display and examine
the result.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[1]: # Assign `failed_login_list` to the list of the number of failed login attempts␣
↪→per month

failed_login_list = [119, 101, 99, 91, 92, 105, 108, 85, 88, 90, 264, 223]

Sort `failed_login_list` in ascending numerical order and display the result

print(sorted(failed_login_list))

[85, 88, 90, 91, 92, 99, 101, 105, 108, 119, 223, 264]

Hint 1

To order the failed_login_list in ascending numerical order, use the sorted() function.

This is a built-in Python function that takes in a list, sorts its components, and returns the result.

Hint 2

To order the failed_login_list in ascending numerical order, call the sorted() function and
pass in failed_login_list.

To display the result, make sure to place the call to sorted() inside the print() statement.

Question 1 What do you observe from the output above? Do you notice any outlying
numbers that indicate an increase in the failed number of login attempts?

[Double-click to enter your responses here.]

2

1.4 Task 2

Now, you’ll want to isolate the highest number of failed login attempts so you can later investigate
information about the month when that highest value occurred.

You’ll use the function that returns the largest numeric element from a list. Then, you’ll pass this
function into the print() function to display the result. This will allow you to determine which
month to investigate further.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[2]: # Assign `failed_login_list` to the list of the number of failed login attempts␣
↪→per month

failed_login_list = [119, 101, 99, 91, 92, 105, 108, 85, 88, 90, 264, 223]

Determine the highest number of failed login attempts from␣
↪→`failed_login_list` and display the result

print(max(failed_login_list))

264

Hint 1

To determine the highest number of failed login attempts from failed_login_list, use the max()
function.

This is a built-in Python function that takes in a sequence, identifies the maximum value from the
sequence and returns the result.

Hint 2

To determine the highest number of failed login attempts from failed_login_list, call the max()
function and pass in failed_login_list.

To display the result, make sure to place the call to max() inside the print() statement.

Question 2 What do you observe from the output above?

[Double-click to enter your responses here.]

1.5 Task 3

In your work as an analyst, you’ll first define a function that displays a message about how many
login attempts a user has made that day.

In this task, define a function named analyze_logins() that takes in two parameters, username
and current_day_logins. Every time this function is called, it should display a message about
the number of login attempts the user has made that day.

3

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell. Note that the code cell will contain only a function definition, so running it will not produce
an output.

[3]: # Define a function named `analyze_logins()` that takes in two parameters,␣
↪→`username` and `current_day_logins`

YOUR CODE HERE ###:
def analyze_logins(username, current_day_logins):

Display a message about how many login attempts the user has made that day

print("Current day login total for", username, "is", current_day_logins)

Hint 1

To write a function header in Python, start with the def keyword, followed by the function name
and then parantheses.

Hint 2

In Python, to define a function that takes in parameters, place the names of the parameters inside
of the parantheses at the function header, and use a , between each parameter and the next.

Hint 3

To define a function named analyze_logins() that takes in two parameters, username and
current_day_logins, start with the def keyword, followed by analyze_logins(), and write
username, current_day_logins inside the parantheses. Be sure to write this code before the
:.

1.6 Task 4

Now that you’ve defined the analyze_logins() function, call it to test out how it behaves.

Call analyze_logins() with the arguments "ejones" and 9.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[5]: # Define a function named `analyze_logins()` that takes in two parameters,␣
↪→`username` and `current_day_logins`

def analyze_logins(username, current_day_logins):

Display a message about how many login attempts the user has made that day

print("Current day login total for", username, "is", current_day_logins)

Call `analyze_logins()`

4

YOUR CODE HERE
analyze_logins("ejones", 9)

Current day login total for ejones is 9

Hint 1

To call the analyze_logins() function after it’s defined, write analyze_logins(). Then make
sure to place the arguments "ejones" and 9 inside the parantheses.

Hint 2

The function call should be written as analyze_logins("ejones", 9).

Question 3 What does this function display? Would the output vary for different
users?

[Double-click to enter your responses here.]

1.7 Task 5

Now, you’ll need to expand this function so that it also provides the average number of login
attempts made by the user on that day. Doing this will require incorporating a third parameter
into the function definition.

In this task, add a parameter called average_day_logins. The code will use this parameter to
display an additional message. The additional message will convey the average login attemps made
by the user on that day. Then, call the function with the same first and second arguments as used
in Task 4 and a third argument of 3.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[6]: # Define a function named `analyze_logins()` that takes in three parameters,␣
↪→`username`, `current_day_logins`, and `average_day_logins`

def analyze_logins(username, current_day_logins, average_day_logins):

Display a message about how many login attempts the user has made that day

print("Current day login total for", username, "is", current_day_logins)

Display a message about average number of login attempts the user has␣
↪→made that day

print("Average logins per day for", username, "is", average_day_logins)

Call `analyze_logins()`

YOUR CODE HERE

5

analyze_logins("ejones", 9, 3)

Current day login total for ejones is 9
Average logins per day for ejones is 3

Hint 1

In Python, to define a function that takes in parameters, place the names of the parameter inside
the parantheses at the function header, with a , between each parameter and the next.

Hint 2

You need to define a function named analyze_logins() that takes in three parameters,
username, current_day_logins, and average_day_logins. So you’ll need to write username,
current_day_logins, average_day_logins inside the parantheses.

Hint 3

To call the analyze_logins() function after it’s defined, write analyze_logins(). Then make
sure to place the arguments "ejones", 9, and 3 inside the parantheses.

1.8 Task 6

In this task, you’ll further expand the function. Include a calculation to get the ratio of the logins
made on the current day to the logins made on an average day. Store this in a new variable named
login_ratio. The function displays an additional message that uses this variable.

Note that if average_day_logins is equal to 0, then dividing current_day_logins by
average_day_logins will cause an error. Due to the error, Python will display the following
message: ZeroDivisionError: division by zero. For this activity, assume that all users will
have logged in at least once before. This means that their average_day_logins will be greater
than 0, and the function will not involve dividing by zero.

After defining the function, call the function with the same arguments that you used in the previous
task.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[7]: # Define a function named `analyze_logins()` that takes in three parameters,␣
↪→`username`, `current_day_logins`, and `average_day_logins`

def analyze_logins(username, current_day_logins, average_day_logins):

Display a message about how many login attempts the user has made that day

print("Current day login total for", username, "is", current_day_logins)

Display a message about average number of login attempts the user has␣
↪→made that day

6

print("Average logins per day for", username, "is", average_day_logins)

Calculate the ratio of the logins made on the current day to the logins␣
↪→made on an average day, storing in a variable named `login_ratio`

YOUR CODE HERE
login_ratio = current_day_logins / average_day_logins

Display a message about the ratio

print(username, "logged in", login_ratio, "times as much as they do on an␣
↪→average day.")

Call `analyze_logins()`

YOUR CODE HERE
analyze_logins("ejones", 9, 3)

Current day login total for ejones is 9
Average logins per day for ejones is 3
ejones logged in 3.0 times as much as they do on an average day.

Hint 1

To calculate the ratio of the logins made on the current day to the logins made on an average day,
divide current_day_logins by average_day_logins.

Assign a variable named login_ratio to the result of this calculation, using the = assignment
operator.

Hint 2

To assign a variable named login_ratio to the result of the calculation, use the = assignment
operator. Write login_ratio to the left of =, and place the calculation to the right of =.

Hint 3

Call the updated analyze_logins() function and pass in "ejones", 9, and 3 as the three argu-
ments, in that order.

Question 4 What does this version of the analyze_logins() function display? Would
the output vary for different users?

[Double-click to enter your responses here.]

1.9 Task 7

You’ll continue working with the analyze_logins() function and add a return statement to it.
Return statements allow you to send information back to the function call.

7

In this task, use the return keyword to output the login_ratio from the function, so that it can
be used later in your work.

You’ll call the function with the same arguments used in the previous task and store the output
from the function call in a variable named login_analysis. You’ll then use a print() statement
to display the saved information.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[8]: # Define a function named `analyze_logins()` that takes in three parameters,␣
↪→`username`, `current_day_logins`, and `average_day_logins`

def analyze_logins(username, current_day_logins, average_day_logins):

Display a message about how many login attempts the user has made that day

print("Current day login total for", username, "is", current_day_logins)

Display a message about average number of login attempts the user has␣
↪→made that day

print("Average logins per day for", username, "is", average_day_logins)

Calculate the ratio of the logins made on the current day to the logins␣
↪→made on an average day, storing in a variable named `login_ratio`

login_ratio = current_day_logins / average_day_logins

Return the ratio

YOUR CODE HERE ### login_ratio
return login_ratio

Call `analyze_logins() and store the output in a variable named␣
↪→`login_analysis`

login_analysis = analyze_logins("ejones", 9, 3)

Display a message about the `login_analysis`

print("ejones", "logged in", login_analysis, "times as much as they do on an␣
↪→average day.")

Current day login total for ejones is 9
Average logins per day for ejones is 3
ejones logged in 3.0 times as much as they do on an average day.

Hint 1

8

When defining the analyze_logins() function this time, place the return keyword in front of the
output that you want the function to return.

Hint 2

When defining the analyze_logins() function this time, write return in front of login_ratio.
(Do not place parentheses after the return keyword. It is not a function.)

Question 5 How does this version of the analyze_logins() function compare to the
previous versions?

[Double-click to enter your responses here.]

1.10 Task 8

In this task, you’ll use the value of login_analysis in a conditional statement. When the value
of login_analysis is greater than or equal to 3, then the login activity will require further in-
vestigation, and an alert will be displayed. Incorporate this condition to complete the conditional
statement in the code.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[12]: # Define a function named `analyze_logins()` that takes in three parameters,␣
↪→`username`, `current_day_logins`, and `average_day_logins`

def analyze_logins(username, current_day_logins, average_day_logins):

Display a message about how many login attempts the user has made that day

print("Current day login total for", username, "is", current_day_logins)

Display a message about average number of login attempts the user has␣
↪→made that day

print("Average logins per day for", username, "is", average_day_logins)

Calculate the ratio of the logins made on the current day to the logins␣
↪→made on an average day, storing in a variable named `login_ratio`

login_ratio = current_day_logins / average_day_logins

Return the ratio

return login_ratio

Call `analyze_logins() and store the output in a variable named␣
↪→`login_analysis`

9

login_analysis = analyze_logins("ejones", 9, 3)

Conditional statement that displays an alert about the login activity if it's␣
↪→more than normal

if login_analysis > 3:
print("Alert! This account has more login activity than normal.")

Current day login total for ejones is 9
Average logins per day for ejones is 3

Hint 1

To calculate the ratio of the logins made on the current day to the logins made on an average day,
divide current_day_logins by average_day_logins.

Assign a variable named login_ratio to the result of this calculation, using the = assignment
operator.

Hint 2

To assign a variable named login_ratio to the result of the calculation, use the = assignment
operator. Write login_ratio to the left of =, and place the calculation to the right of =.

Hint 3

Call the updated analyze_logins() function and pass in "ejones", 9, and 3 as the three argu-
ments, in that order.

1.11 Conclusion

What are your key takeaways from this lab?

[Double-click to enter your responses here.]

10

	Activity: Create more functions
	Introduction
	Scenario
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Conclusion

