
Activity_Create another algorithm

January 18, 2024

1 Activity: Create another algorithm

1.1 Introduction

An important part of cybersecurity is controlling access to restricted content. In this lab, you’ll
work with a text file containing IP addresses that are allowed to access specific restricted content
at your organization.

Parsing a file allows security analysts to read and update the contents. Python helps analysts
develop algorithms to automate the process of parsing files and keeping them up-to-date.

You’ll develop an algorithm that parses this text file of IP addresses and updates the file by removing
that addresses that no longer have access to the restricted content.

Tips for completing this lab

As you navigate this lab, keep the following tips in mind:

• ### YOUR CODE HERE ### indicates where you should write code. Be sure to replace this
with your own code before running the code cell.

• Feel free to open the hints for additional guidance as you work on each task.
• To enter your answer to a question, double-click the markdown cell to edit. Be sure to replace

the “[Double-click to enter your responses here.]” with your own answer.
• You can save your work manually by clicking File and then Save in the menu bar at the top

of the notebook.
• You can download your work locally by clicking File and then Download and then specifying

your preferred file format in the menu bar at the top of the notebook.

1.2 Scenario

In this lab, you’re working as a security analyst and you’re responsible for developing an algorithm
that parses a file containing IP addresses that are allowed to access restricted content and removes
addresses that no longer have access.

1.3 Task 1

Your eventual goal is to develop an algorithm that parses a series of IP addresses that can access
restricted information and removes the addresses that are no longer allowed. Python can automate
this process.

1

You’re given a text file called "allow_list.txt" that contains a series of IP addresses that are
allowed to access restricted information.

There are IP addresses that should no longer have access to this information, and their IP addresses
need to be removed from the text file. You’re given a variable named remove_list that contains
the list of IP addresses to be removed.

Display both variables to explore their contents, and run the cell. Be sure to replace each ### YOUR
CODE HERE ### with your own code before running the following cell.

[1]: # Assign `import_file` to the name of the file

import_file = "allow_list.txt"

Assign `remove_list` to a list of IP addresses that are no longer allowed to␣
↪→access restricted information.

remove_list = ["192.168.97.225", "192.168.158.170", "192.168.201.40", "192.168.
↪→58.57"]

Display `import_file`

print(import_file)

Display `remove_list`

print(remove_list)

allow_list.txt
['192.168.97.225', '192.168.158.170', '192.168.201.40', '192.168.58.57']

Hint 1

To display the contents of a variable, pass it as an argument to the print() function.

Question 1 What do you observe about the output above?

[Double-click to enter your responses here.]

1.4 Task 2

In this task, start by opening the text file using the import_file variable, the with keyword, and
the open() function with the "r" parameter. Be sure to replace the ### YOUR CODE HERE ###
with your own code.

For now, you’ll write the first line of the with statement. Running this code will produce an error
because it will only contain the first line of the with statement; you’ll complete this with statement
in the task after this.

2

[]: # Assign `import_file` to the name of the file

import_file = "allow_list.txt"

Assign `remove_list` to a list of IP addresses that are no longer allowed to␣
↪→access restricted information.

remove_list = ["192.168.97.225", "192.168.158.170", "192.168.201.40", "192.168.
↪→58.57"]

First line of `with` statement

with open(import_file, "r") as file:

Hint 1

The open() function in Python allows you to open a file.

As the first parameter, it takes in the name of the file (or a variable containing the name of the
file). As the second parameter, it takes in a string that indicates how the file should be handled.

Pass in the letter "r" as the second parameter when you want to read the file.

1.5 Task 3

Now, use the .read() method to read the imported file and store it in a variable named
ip_addresses.

Afterwards, display ip_addresses to examine the data in its current format.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[6]: # Assign `import_file` to the name of the file

import_file = "allow_list.txt"

Assign `remove_list` to a list of IP addresses that are no longer allowed to␣
↪→access restricted information.

remove_list = ["192.168.97.225", "192.168.158.170", "192.168.201.40", "192.168.
↪→58.57"]

Build `with` statement to read in the initial contents of the file

with open(import_file, "r") as file:

Use `.read()` to read the imported file and store it in a variable named␣
↪→`ip_addresses`

3

ip_addresses = file.read()

Display `ip_addresses`

print(ip_addresses)

ip_address
192.168.25.60
192.168.205.12
192.168.97.225
192.168.6.9
192.168.52.90
192.168.158.170
192.168.90.124
192.168.186.176
192.168.133.188
192.168.203.198
192.168.201.40
192.168.218.219
192.168.52.37
192.168.156.224
192.168.60.153
192.168.58.57
192.168.69.116

Hint 1

The .read() method in Python allows you to read in a file.

Hint 2

Call file.read() to read the imported file.

Hint 3

To display the contents of a variable, pass it as an argument to the print() function.

Question 2 Do you notice any IP addresses in the allow list that are also in the
remove_list?

[Double-click to enter your responses here.]

1.6 Task 4

After reading the file, reassign the ip_addresses variable so its data type is updated from a string
to a list. Use the .split() method to achieve this. Adding this step will allow you to iterate
through each of the IP addresses in the allow list instead of navigating a large string that contains
all the addresses merged together.

4

Afterwards, display the ip_addresses variable to verify that the update took place.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

[7]: # Assign `import_file` to the name of the file

import_file = "allow_list.txt"

Assign `remove_list` to a list of IP addresses that are no longer allowed to␣
↪→access restricted information.

remove_list = ["192.168.97.225", "192.168.158.170", "192.168.201.40", "192.168.
↪→58.57"]

Build `with` statement to read in the initial contents of the file

with open(import_file, "r") as file:

Use `.read()` to read the imported file and store it in a variable named␣
↪→`ip_addresses`

ip_addresses = file.read()

Use `.split()` to convert `ip_addresses` from a string to a list

ip_addresses = ip_addresses.split()

Display `ip_addresses`

print(ip_addresses)

['ip_address', '192.168.25.60', '192.168.205.12', '192.168.97.225',
'192.168.6.9', '192.168.52.90', '192.168.158.170', '192.168.90.124',
'192.168.186.176', '192.168.133.188', '192.168.203.198', '192.168.201.40',
'192.168.218.219', '192.168.52.37', '192.168.156.224', '192.168.60.153',
'192.168.58.57', '192.168.69.116']

Hint 1

The .split() method in Python allows you to convert a string to a list. This method can take in
a parameter that specifies which character to split on. If a parameter is not passed in, the method
will split on whitespace by default. Note that whitespace includes any space between text on the
same line and the space between one line and the next line.

In this task, the default behavior of .split() works well. Each IP address is on a new line in the
allow_list.txt file. In other words, there is whitespace between IP addresses in the text file.
When you use .split(), it will separate the IP addresses and output them as a list.

Hint 2

5

To display the contents of a variable, pass it as an argument to the print() function.

1.7 Task 5

Now, you’ll write code that removes the elements of remove_list from the ip_addresses list.
This will require both an iterative statement and a conditional statement.

First, build the iterative statement. Name the loop variable element, loop through ip_addresses,
and display each element. Be sure to replace each ### YOUR CODE HERE ### with your own code
before you run the following cell.

[13]: # Assign `import_file` to the name of the file

import_file = "allow_list.txt"

Assign `remove_list` to a list of IP addresses that are no longer allowed to␣
↪→access restricted information.

remove_list = ["192.168.97.225", "192.168.158.170", "192.168.201.40", "192.168.
↪→58.57"]

Build `with` statement to read in the initial contents of the file

with open(import_file, "r") as file:

Use `.read()` to read the imported file and store it in a variable named␣
↪→`ip_addresses`

ip_addresses = file.read()

Use `.split()` to convert `ip_addresses` from a string to a list

ip_addresses = ip_addresses.split()

Build iterative statement
Name loop variable `element`
Loop through `ip_addresses`

YOUR CODE HERE
for element in ip_addresses:

Display `element` in every iteration

print(element)

ip_address
192.168.25.60

6

192.168.205.12
192.168.97.225
192.168.6.9
192.168.52.90
192.168.158.170
192.168.90.124
192.168.186.176
192.168.133.188
192.168.203.198
192.168.201.40
192.168.218.219
192.168.52.37
192.168.156.224
192.168.60.153
192.168.58.57
192.168.69.116

Hint 1

Build a for loop to iterate through ip_addresses. Be sure to start with the for keyword. Use
element as the loop variable and use in as the loop condition.

Hint 2

To display the contents of a variable, pass it as an argument to the print() function.

1.8 Task 6

Now, build a conditional statement to remove the elements of remove_list from the ip_addresses
list. The conditional statement should be placed inside the iterative statement that loops through
ip_addresses. In every iteration, if the current element in the ip_addresses list is in the
remove_list, the remove() method should be used to remove that element.

Afterwards, display the updated ip_addresses list to verify that the elements of remove_list are
no longer in the ip_addresses. Be sure to replace each ### YOUR CODE HERE ### with your own
code before you run the following cell.

[14]: # Assign `import_file` to the name of the file

import_file = "allow_list.txt"

Assign `remove_list` to a list of IP addresses that are no longer allowed to␣
↪→access restricted information.

remove_list = ["192.168.97.225", "192.168.158.170", "192.168.201.40", "192.168.
↪→58.57"]

Build `with` statement to read in the initial contents of the file

7

with open(import_file, "r") as file:

Use `.read()` to read the imported file and store it in a variable named␣
↪→`ip_addresses`

ip_addresses = file.read()

Use `.split()` to convert `ip_addresses` from a string to a list

ip_addresses = ip_addresses.split()

Build iterative statement
Name loop variable `element`
Loop through `ip_addresses`

for element in ip_addresses:

Build conditional statement
If current element is in `remove_list`,

if element == remove_list:

then current element should be removed from `ip_addresses`

YOUR CODE HERE
ip_addresses.remove(element)

Display `ip_addresses`

print(ip_addresses)

['ip_address', '192.168.25.60', '192.168.205.12', '192.168.97.225',
'192.168.6.9', '192.168.52.90', '192.168.158.170', '192.168.90.124',
'192.168.186.176', '192.168.133.188', '192.168.203.198', '192.168.201.40',
'192.168.218.219', '192.168.52.37', '192.168.156.224', '192.168.60.153',
'192.168.58.57', '192.168.69.116']

Hint 1

When building the conditional statement, use the in operator to check if element is in
remove_list.

Hint 2

To remove element from ip_addresses, call the .remove() method on ip_addresses, and pass
in element.

Hint 3

To remove element from ip_addresses, call ip_addresses.remove() and pass in element.

8

1.9 Task 7

The next step is to update the original file that was used to create the ip_addresses list. A
line of code containing the .join() method has been added to the code so that the file can be
updated. This is necessary because ip_addresses must be in string format when used inside the
with statement to rewrite the file.

The .join() method takes in an iterable (such as a list) and concatenates every element of it into
a string. The .join() method is applied to a string consisting of the character that will be used
to separate every element in the iterable once its converted into a string. In the code below, the
method is applied to the string " ", which contains just a space character. The argument of the
.join() method is the iterable you want to convert, and in this case, that’s ip_addresses. As a
result, it converts ip_addresses from a list back into a string with a space between each element
and the next.

After this line with the .join() method, build the with statement that rewrites the original file.
Use the "w" parameter when calling the open() function to delete the contents in the original file
and replace it with what you want to write. Be sure to replace each ### YOUR CODE HERE ###
with your own code before you run the following cell. This code cell will not produce an output.

[]: # Assign `import_file` to the name of the file

import_file = "allow_list.txt"

Assign `remove_list` to a list of IP addresses that are no longer allowed to␣
↪→access restricted information.

remove_list = ["192.168.97.225", "192.168.158.170", "192.168.201.40", "192.168.
↪→58.57"]

Build `with` statement to read in the initial contents of the file

with open(import_file, "r") as file:

Use `.read()` to read the imported file and store it in a variable named␣
↪→`ip_addresses`

ip_addresses = file.read()

Use `.split()` to convert `ip_addresses` from a string to a list

ip_addresses = ip_addresses.split()

Build iterative statement
Name loop variable `element`
Loop through `ip_addresses`

for element in ip_addresses:

9

Build conditional statement
If current element is in `remove_list`,

if element in remove_list:

then current element should be removed from `ip_addresses`

ip_addresses.remove(element)

Convert `ip_addresses` back to a string so that it can be written into the␣
↪→text file

ip_addresses = " ".join(ip_addresses)

Build `with` statement to rewrite the original file

with open(import_file, "w") as file:

Rewrite the file, replacing its contents with `ip_addresses`

YOUR CODE HERE
file.write(ip_addresses)

Hint 1

To complete the first line of the with statement, call the open() function and pass in the name of
the file as the first parameter and the letter "w" as the second parameter.

The "w" parameter specifies that you’re opening the file for the purpose of writing to it.

Hint 2

Inside the with statement, call the .write() method to replace the contents of the file with the
data stored in ip_addresses.

Hint 3

Inside the with statement, call file.write() and pass in ip_addresses.

1.10 Task 8

In this task, you’ll verify that the original file was rewritten using the correct list.

Write another with statement, this time to read in the updated file. Start by opening the file.
Then read the file and store its contents in the text variable.

Afterwards, display the text variable to examine the result.

Be sure to replace each ### YOUR CODE HERE ### with your own code before you run the following
cell.

10

[15]: # Assign `import_file` to the name of the file

import_file = "allow_list.txt"

Assign `remove_list` to a list of IP addresses that are no longer allowed to␣
↪→access restricted information.

remove_list = ["192.168.97.225", "192.168.158.170", "192.168.201.40", "192.168.
↪→58.57"]

Build `with` statement to read in the initial contents of the file

with open(import_file, "r") as file:

Use `.read()` to read the imported file and store it in a variable named␣
↪→`ip_addresses`

ip_addresses = file.read()

Use `.split()` to convert `ip_addresses` from a string to a list

ip_addresses = ip_addresses.split()

Build iterative statement
Name loop variable `element`
Loop through `ip_addresses`

for element in ip_addresses:

Build conditional statement
If current element is in `remove_list`,

if element in remove_list:

then current element should be removed from `ip_addresses`

ip_addresses.remove(element)

Convert `ip_addresses` back to a string so that it can be written into the␣
↪→text file

ip_addresses = " ".join(ip_addresses)

Build `with` statement to rewrite the original file

with open(import_file, "w") as file:

11

Rewrite the file, replacing its contents with `ip_addresses`

file.write(ip_addresses)

Build `with` statement to read in the updated file

with open(import_file, "r") as file:

Read in the updated file and store the contents in `text`

text = file.read()

Display the contents of `text`

print(text)

ip_address 192.168.25.60 192.168.205.12 192.168.6.9 192.168.52.90 192.168.90.124
192.168.186.176 192.168.133.188 192.168.203.198 192.168.218.219 192.168.52.37
192.168.156.224 192.168.60.153 192.168.69.116

Hint 1

To complete the first line of the with statement, call the open() function and pass in the name of
the file as the first parameter and the letter "r" as the second parameter.

The "r" parameter specifies that you’re opening the file for the purpose of reading it.

Hint 2

Inside the with statement, call the .read() method to read the contents of the file. Assign the
text variable to the result.

Hint 3

To display the contents of a variable, pass it as an argument to the print() function.

1.11 Task 9

The next step is to bring all of the code you’ve written leading up to this point and put it all into
one function.

Define a function named update_file() that takes in two parameters. The first parameter is the
name of the text file that contains IP addresses (call this parameter import_file). The second
parameter is a list that contains IP addresses to be removed (call this parameter remove_list).

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell. Note that this code cell will not produce an output.

[]: # Define a function named `update_file` that takes in two parameters:␣
↪→`import_file` and `remove_list`

and combines the steps you've written in this lab leading up to this

12

def update_file (import_file, remove_list)

Build `with` statement to read in the initial contents of the file

with open(import_file, "r") as file:

Use `.read()` to read the imported file and store it in a variable␣
↪→named `ip_addresses`

ip_addresses = file.read()

Use `.split()` to convert `ip_addresses` from a string to a list

ip_addresses = ip_addresses.split()

Build iterative statement
Name loop variable `element`
Loop through `ip_addresses`

for element in ip_addresses:

Build conditional statement
If current element is in `remove_list`,

if element in remove_list:

then current element should be removed from `ip_addresses`

ip_addresses.remove(element)

Convert `ip_addresses` back to a string so that it can be written into␣
↪→the text file

ip_addresses = " ".join(ip_addresses)

Build `with` statement to rewrite the original file

with open(import_file, "w") as file:

Rewrite the file, replacing its contents with `ip_addresses`

file.write(ip_addresses)

Hint 1

Use the def keyword to start the function definition.

13

Hint 2

After the def keyword, specify the name of the function, followed by parantheses and a colon.
Inside the parantheses, specify the parameters that the function takes in.

Hint 3

After the def keyword, write update_file(import_file, remove_list): to complete the func-
tion definition header.

Question 3 What are the benefits of incorporating the algorithm into a single func-
tion?

[Double-click to enter your responses here.]

1.12 Task 10

Finally, call the update_file() that you defined. Apply the function to "allow_list.txt" and
pass in a list of IP addresses as the second argument.

Use the following list of IP addresses as the second argument:

["192.168.25.60", "192.168.140.81", "192.168.203.198"]

After the function call, use a with statement to read the contents of the allow list. Then display
the contents of the allow list. Run it to verify that the file has been updated by the function.

Be sure to replace the ### YOUR CODE HERE ### with your own code before you run the following
cell.

[17]: # Define a function named `update_file` that takes in two parameters:␣
↪→`import_file` and `remove_list`

and combines the steps you've written in this lab leading up to this

def update_file(import_file, remove_list):

Build `with` statement to read in the initial contents of the file

with open(import_file, "r") as file:

Use `.read()` to read the imported file and store it in a variable named␣
↪→`ip_addresses`

ip_addresses = file.read()

Use `.split()` to convert `ip_addresses` from a string to a list

ip_addresses = ip_addresses.split()

Build iterative statement

14

Name loop variable `element`
Loop through `ip_addresses`

for element in ip_addresses:

Build conditional statement
If current element is in `remove_list`,

if element in remove_list:

then current element should be removed from `ip_addresses`

ip_addresses.remove(element)

Convert `ip_addresses` back to a string so that it can be written into the␣
↪→text file

ip_addresses = " ".join(ip_addresses)

Build `with` statement to rewrite the original file

with open(import_file, "w") as file:

Rewrite the file, replacing its contents with `ip_addresses`

file.write(ip_addresses)

Call `update_file()` and pass in "allow_list.txt" and a list of IP addresses␣
↪→to be removed

update_file("allow_list.txt", ["192.168.25.60", "192.168.140.81", "192.168.203.
↪→198"])

Build `with` statement to read in the updated file

with open("allow_list.txt", "r") as file:

Read in the updated file and store the contents in `text`

text = file.read()

Display the contents of `text`

print(text)

ip_address 192.168.205.12 192.168.6.9 192.168.52.90 192.168.90.124
192.168.186.176 192.168.133.188 192.168.218.219 192.168.52.37 192.168.156.224

15

192.168.60.153 192.168.69.116

Hint 1

To call the update_file() function, write the name of the function, followed by parantheses, and
pass in the file name and list of IP addresses that you want to try out the function on. Be sure to
separate the two arguments with a comma (,).

Hint 2

Inside the with statement, call the .read() method to read the contents of the file. Assign the
text variable to the result.

Hint 3

To display the contents of the text variable, pass it as an argument to the print() function.

1.13 Conclusion

What are your key takeaways from this lab?

[Double-click to enter your responses here.]

16

	Activity: Create another algorithm
	Introduction
	Scenario
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Task 9
	Task 10
	Conclusion

