
Activity_Course 2 Automatidata project lab

December 21, 2023

1 Automatidata project

Course 2 - Get Started with Python

Welcome to the Automatidata Project!

You have just started as a data professional in a fictional data consulting firm, Automatidata. Their
client, the New York City Taxi and Limousine Commission (New York City TLC), has hired the
Automatidata team for its reputation in helping their clients develop data-based solutions.

The team is still in the early stages of the project. Previously, you were asked to complete a
project proposal by your supervisor, DeShawn Washington. You have received notice that your
project proposal has been approved and that New York City TLC has given the Automatidata team
access to their data. To get clear insights, New York TLC’s data must be analyzed, key variables
identified, and the dataset ensured it is ready for analysis.

A notebook was structured and prepared to help you in this project. Please complete the following
questions.

2 Course 2 End-of-course project: Inspect and analyze data

In this activity, you will examine data provided and prepare it for analysis. This activity will help
ensure the information is,

1. Ready to answer questions and yield insights

2. Ready for visualizations

3. Ready for future hypothesis testing and statistical methods

The purpose of this project is to investigate and understand the data provided.

The goal is to use a dataframe contructed within Python, perform a cursory inspection of the
provided dataset, and inform team members of your findings.
This activity has three parts:

Part 1: Understand the situation * Prepare to understand and organize the provided taxi cab
dataset and information.

Part 2: Understand the data

1

• Create a pandas dataframe for data learning, future exploratory data analysis (EDA), and
statistical activities.

• Compile summary information about the data to inform next steps.

Part 3: Understand the variables

• Use insights from your examination of the summary data to guide deeper investigation into
specific variables.

Follow the instructions and answer the following questions to complete the activity. Then, you will
complete an Executive Summary using the questions listed on the PACE Strategy Document.

Be sure to complete this activity before moving on. The next course item will provide you with a
completed exemplar to compare to your own work.

3 Identify data types and relevant variables using Python

4 PACE stages

Throughout these project notebooks, you’ll see references to the problem-solving framework PACE.
The following notebook components are labeled with the respective PACE stage: Plan, Analyze,
Construct, and Execute.

4.1 PACE: Plan

Consider the questions in your PACE Strategy Document and those below to craft your response:

4.1.1 Task 1. Understand the situation

• How can you best prepare to understand and organize the provided taxi cab information?

==> ENTER YOUR RESPONSE HERE

4.2 PACE: Analyze

Consider the questions in your PACE Strategy Document to reflect on the Analyze stage.

4.2.1 Task 2a. Build dataframe

Create a pandas dataframe for data learning, and future exploratory data analysis (EDA) and
statistical activities.

Code the following,

• import pandas as pd. pandas is used for buidling dataframes.

• import numpy as np. numpy is imported with pandas

2

• df = pd.read_csv('Datasets\NYC taxi data.csv')

Note: pair the data object name df with pandas functions to manipulate data, such as
df.groupby().

Note: As shown in this cell, the dataset has been automatically loaded in for you. You do not
need to download the .csv file, or provide more code, in order to access the dataset and proceed
with this lab. Please continue with this activity by completing the following instructions.

[4]: #Import libraries and packages listed above
YOUR CODE HERE
import pandas as pd
import numpy as np
Load dataset into dataframe
df = pd.read_csv('2017_Yellow_Taxi_Trip_Data.csv')
print("done")

done

4.2.2 Task 2b. Understand the data - Inspect the data

View and inspect summary information about the dataframe by coding the following:

1. df.head(10)
2. df.info()
3. df.describe()

Consider the following two questions:

Question 1: When reviewing the df.info() output, what do you notice about the different
variables? Are there any null values? Are all of the variables numeric? Does anything else stand
out?

Question 2: When reviewing the df.describe() output, what do you notice about the distribu-
tions of each variable? Are there any questionable values?

==> ENTER YOUR RESPONSE TO QUESTIONS 1 & 2 HERE

[5]: df.head(10)

[5]: Unnamed: 0 VendorID tpep_pickup_datetime tpep_dropoff_datetime \
0 24870114 2 03/25/2017 8:55:43 AM 03/25/2017 9:09:47 AM
1 35634249 1 04/11/2017 2:53:28 PM 04/11/2017 3:19:58 PM
2 106203690 1 12/15/2017 7:26:56 AM 12/15/2017 7:34:08 AM
3 38942136 2 05/07/2017 1:17:59 PM 05/07/2017 1:48:14 PM
4 30841670 2 04/15/2017 11:32:20 PM 04/15/2017 11:49:03 PM
5 23345809 2 03/25/2017 8:34:11 PM 03/25/2017 8:42:11 PM
6 37660487 2 05/03/2017 7:04:09 PM 05/03/2017 8:03:47 PM
7 69059411 2 08/15/2017 5:41:06 PM 08/15/2017 6:03:05 PM
8 8433159 2 02/04/2017 4:17:07 PM 02/04/2017 4:29:14 PM
9 95294817 1 11/10/2017 3:20:29 PM 11/10/2017 3:40:55 PM

3

passenger_count trip_distance RatecodeID store_and_fwd_flag \
0 6 3.34 1 N
1 1 1.80 1 N
2 1 1.00 1 N
3 1 3.70 1 N
4 1 4.37 1 N
5 6 2.30 1 N
6 1 12.83 1 N
7 1 2.98 1 N
8 1 1.20 1 N
9 1 1.60 1 N

PULocationID DOLocationID payment_type fare_amount extra mta_tax \
0 100 231 1 13.0 0.0 0.5
1 186 43 1 16.0 0.0 0.5
2 262 236 1 6.5 0.0 0.5
3 188 97 1 20.5 0.0 0.5
4 4 112 2 16.5 0.5 0.5
5 161 236 1 9.0 0.5 0.5
6 79 241 1 47.5 1.0 0.5
7 237 114 1 16.0 1.0 0.5
8 234 249 2 9.0 0.0 0.5
9 239 237 1 13.0 0.0 0.5

tip_amount tolls_amount improvement_surcharge total_amount
0 2.76 0.0 0.3 16.56
1 4.00 0.0 0.3 20.80
2 1.45 0.0 0.3 8.75
3 6.39 0.0 0.3 27.69
4 0.00 0.0 0.3 17.80
5 2.06 0.0 0.3 12.36
6 9.86 0.0 0.3 59.16
7 1.78 0.0 0.3 19.58
8 0.00 0.0 0.3 9.80
9 2.75 0.0 0.3 16.55

[6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 18 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 Unnamed: 0 22699 non-null int64
1 VendorID 22699 non-null int64
2 tpep_pickup_datetime 22699 non-null object

4

3 tpep_dropoff_datetime 22699 non-null object
4 passenger_count 22699 non-null int64
5 trip_distance 22699 non-null float64
6 RatecodeID 22699 non-null int64
7 store_and_fwd_flag 22699 non-null object
8 PULocationID 22699 non-null int64
9 DOLocationID 22699 non-null int64
10 payment_type 22699 non-null int64
11 fare_amount 22699 non-null float64
12 extra 22699 non-null float64
13 mta_tax 22699 non-null float64
14 tip_amount 22699 non-null float64
15 tolls_amount 22699 non-null float64
16 improvement_surcharge 22699 non-null float64
17 total_amount 22699 non-null float64

dtypes: float64(8), int64(7), object(3)
memory usage: 3.1+ MB

[7]: df.describe()

[7]: Unnamed: 0 VendorID passenger_count trip_distance \
count 2.269900e+04 22699.000000 22699.000000 22699.000000
mean 5.675849e+07 1.556236 1.642319 2.913313
std 3.274493e+07 0.496838 1.285231 3.653171
min 1.212700e+04 1.000000 0.000000 0.000000
25% 2.852056e+07 1.000000 1.000000 0.990000
50% 5.673150e+07 2.000000 1.000000 1.610000
75% 8.537452e+07 2.000000 2.000000 3.060000
max 1.134863e+08 2.000000 6.000000 33.960000

RatecodeID PULocationID DOLocationID payment_type fare_amount \
count 22699.000000 22699.000000 22699.000000 22699.000000 22699.000000
mean 1.043394 162.412353 161.527997 1.336887 13.026629
std 0.708391 66.633373 70.139691 0.496211 13.243791
min 1.000000 1.000000 1.000000 1.000000 -120.000000
25% 1.000000 114.000000 112.000000 1.000000 6.500000
50% 1.000000 162.000000 162.000000 1.000000 9.500000
75% 1.000000 233.000000 233.000000 2.000000 14.500000
max 99.000000 265.000000 265.000000 4.000000 999.990000

extra mta_tax tip_amount tolls_amount \
count 22699.000000 22699.000000 22699.000000 22699.000000
mean 0.333275 0.497445 1.835781 0.312542
std 0.463097 0.039465 2.800626 1.399212
min -1.000000 -0.500000 0.000000 0.000000
25% 0.000000 0.500000 0.000000 0.000000
50% 0.000000 0.500000 1.350000 0.000000

5

75% 0.500000 0.500000 2.450000 0.000000
max 4.500000 0.500000 200.000000 19.100000

improvement_surcharge total_amount
count 22699.000000 22699.000000
mean 0.299551 16.310502
std 0.015673 16.097295
min -0.300000 -120.300000
25% 0.300000 8.750000
50% 0.300000 11.800000
75% 0.300000 17.800000
max 0.300000 1200.290000

4.2.3 Task 2c. Understand the data - Investigate the variables

Sort and interpret the data table for two variables:trip_distance and total_amount.

Answer the following three questions:

Question 1: Sort your first variable (trip_distance) from maximum to minimum value, do the
values seem normal?

Question 2: Sort by your second variable (total_amount), are any values unusual?

Question 3: Are the resulting rows similar for both sorts? Why or why not?

==> ENTER YOUR RESPONSES TO QUESTION 1-3 HERE

[8]: # ==> ENTER YOUR CODE HERE
df_sort = df.sort_values(by=['trip_distance'],ascending=False)
df_sort.head(10)

Sort the data by trip distance from maximum to minimum value

[8]: Unnamed: 0 VendorID tpep_pickup_datetime tpep_dropoff_datetime \
9280 51810714 2 06/18/2017 11:33:25 PM 06/19/2017 12:12:38 AM
13861 40523668 2 05/19/2017 8:20:21 AM 05/19/2017 9:20:30 AM
6064 49894023 2 06/13/2017 12:30:22 PM 06/13/2017 1:37:51 PM
10291 76319330 2 09/11/2017 11:41:04 AM 09/11/2017 12:18:58 PM
29 94052446 2 11/06/2017 8:30:50 PM 11/07/2017 12:00:00 AM
18130 90375786 1 10/26/2017 2:45:01 PM 10/26/2017 4:12:49 PM
5792 68023798 2 08/11/2017 2:14:01 PM 08/11/2017 3:17:31 PM
15350 77309977 2 09/14/2017 1:44:44 PM 09/14/2017 2:34:29 PM
10302 43431843 1 05/15/2017 8:11:34 AM 05/15/2017 9:03:16 AM
2592 51094874 2 06/16/2017 6:51:20 PM 06/16/2017 7:41:42 PM

passenger_count trip_distance RatecodeID store_and_fwd_flag \
9280 2 33.96 5 N
13861 1 33.92 5 N

6

6064 1 32.72 3 N
10291 1 31.95 4 N
29 1 30.83 1 N
18130 1 30.50 1 N
5792 1 30.33 2 N
15350 1 28.23 2 N
10302 1 28.20 2 N
2592 1 27.97 2 N

PULocationID DOLocationID payment_type fare_amount extra mta_tax \
9280 132 265 2 150.00 0.0 0.0
13861 229 265 1 200.01 0.0 0.5
6064 138 1 1 107.00 0.0 0.0
10291 138 265 2 131.00 0.0 0.5
29 132 23 1 80.00 0.5 0.5
18130 132 220 1 90.50 0.0 0.5
5792 132 158 1 52.00 0.0 0.5
15350 13 132 1 52.00 0.0 0.5
10302 90 132 1 52.00 0.0 0.5
2592 261 132 2 52.00 4.5 0.5

tip_amount tolls_amount improvement_surcharge total_amount
9280 0.00 0.00 0.3 150.30
13861 51.64 5.76 0.3 258.21
6064 55.50 16.26 0.3 179.06
10291 0.00 0.00 0.3 131.80
29 18.56 11.52 0.3 111.38
18130 19.85 8.16 0.3 119.31
5792 14.64 5.76 0.3 73.20
15350 4.40 5.76 0.3 62.96
10302 11.71 5.76 0.3 70.27
2592 0.00 5.76 0.3 63.06

[9]: #==> ENTER YOUR CODE HERE
total_amount_sorted = df.sort_values(

['total_amount'], ascending=False)['total_amount']
total_amount_sorted.head(20)
Sort the data by total amount and print the top 20 values

[9]: 8476 1200.29
20312 450.30
13861 258.21
12511 233.74
15474 211.80
6064 179.06
16379 157.06
3582 152.30

7

11269 151.82
9280 150.30
1928 137.80
10291 131.80
6708 126.00
11608 123.30
908 121.56
7281 120.96
18130 119.31
13621 115.94
13359 111.95
29 111.38
Name: total_amount, dtype: float64

[10]: #==> ENTER YOUR CODE HERE
total_amount_sorted.tail(20)
Sort the data by total amount and print the bottom 20 values

[10]: 14283 0.31
19067 0.30
10506 0.00
5722 0.00
4402 0.00
22566 0.00
1646 -3.30
18565 -3.80
314 -3.80
5758 -3.80
5448 -4.30
4423 -4.30
10281 -4.30
8204 -4.80
20317 -4.80
11204 -5.30
14714 -5.30
17602 -5.80
20698 -5.80
12944 -120.30
Name: total_amount, dtype: float64

[11]: #==> ENTER YOUR CODE HERE
df['payment_type'].value_counts()
How many of each payment type are represented in the data?

[11]: 1 15265
2 7267
3 121

8

4 46
Name: payment_type, dtype: int64

According to the data dictionary, the payment method was encoded as follows:

1 = Credit card
2 = Cash
3 = No charge
4 = Dispute
5 = Unknown
6 = Voided trip

[13]: #==> ENTER YOUR CODE HERE
avg_cc_tip = df[df['payment_type']==1]['tip_amount'].mean()
print('Avg. cc tip:', avg_cc_tip)
What is the average tip for trips paid for with credit card?

#==> ENTER YOUR CODE HERE
avg_cash_tip = df[df['payment_type']==2]['tip_amount'].mean()
print('Avg. cash tip:', avg_cash_tip)
What is the average tip for trips paid for with cash?

Avg. cc tip: 2.7298001965279934
Avg. cash tip: 0.0

[14]: #==> ENTER YOUR CODE HERE
df['VendorID'].value_counts()
How many times is each vendor ID represented in the data?

[14]: 2 12626
1 10073
Name: VendorID, dtype: int64

[15]: #==> ENTER YOUR CODE HERE
df.groupby(['VendorID']).mean(numeric_only=True)[['total_amount']]
What is the mean total amount for each vendor?

[15]: total_amount
VendorID
1 16.298119
2 16.320382

[16]: #==> ENTER YOUR CODE HERE
credit_card = df[df['payment_type']==1]
Filter the data for credit card payments only

#==> ENTER YOUR CODE HERE
credit_card['passenger_count'].value_counts()

9

Filter the credit-card-only data for passenger count only

[16]: 1 10977
2 2168
5 775
3 600
6 451
4 267
0 27
Name: passenger_count, dtype: int64

[17]: #==> ENTER YOUR CODE HERE

Calculate the average tip amount for each passenger count (credit card␣
↪→payments only)

credit_card.groupby(['passenger_count']).mean(numeric_only=True)[['tip_amount']]

[17]: tip_amount
passenger_count
0 2.610370
1 2.714681
2 2.829949
3 2.726800
4 2.607753
5 2.762645
6 2.643326

4.3 PACE: Construct

Note: The Construct stage does not apply to this workflow. The PACE framework can be adapted
to fit the specific requirements of any project.

4.4 PACE: Execute

Consider the questions in your PACE Strategy Document and those below to craft your response.

4.4.1 Given your efforts, what can you summarize for DeShawn and the data team?

Note for Learners: Your notebook should contain data that can address Luana’s requests. Which
two variables are most helpful for building a predictive model for the client: NYC TLC?

==> ENTER YOUR RESPONSE HERE

Congratulations! You’ve completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

10

	Automatidata project
	Course 2 End-of-course project: Inspect and analyze data
	Identify data types and relevant variables using Python
	PACE stages
	PACE: Plan
	Task 1. Understand the situation

	PACE: Analyze
	Task 2a. Build dataframe
	Task 2b. Understand the data - Inspect the data
	Task 2c. Understand the data - Investigate the variables

	PACE: Construct
	PACE: Execute
	Given your efforts, what can you summarize for DeShawn and the data team?

