
Exemplar_ Dictionaries & sets

November 30, 2023

Exemplar: Dictionaries and sets

0.1 Introduction

In this lab, you will practice creating, modifying, and working with data structures in Python.
This will develop your knowledge of different kinds of data structures and the different operations
that you can perform with them to answer questions about the data. This will help you prepare
for projects you may encounter where you will need to use data structures to store and keep track
of data.

In your work as an analyst, you are continuing your research into air quality data collected by the
U.S. Environmental Protection Agency (EPA). The air quality index (AQI) is a number that runs
from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the
health concern. For example, an AQI value of 50 or below represents good air quality, while an
AQI value over 300 represents hazardous air quality. Refer to this guide from AirNow.gov for more
information.

In this activity, you will create, modify, and update dictionaries and sets. You will also be working
with more data than in previous labs to more closely resemble situations encountered by working
data professionals.

0.2 Tips for completing this lab

As you navigate this lab, keep the following tips in mind:

• ### YOUR CODE HERE ### indicates where you should write code. Be sure to replace this
with your own code before running the code cell.

• Feel free to open the hints for additional guidance as you work on each task.
• To enter your answer to a question, double-click the markdown cell to edit. Be sure to replace

the “[Double-click to enter your responses here.]” with your own answer.
• You can save your work manually by clicking File and then Save in the menu bar at the top

of the notebook.
• You can download your work locally by clicking File and then Download and then specifying

your preferred file format in the menu bar at the top of the notebook.

Task 1: Create a dictionary to store information

Dictionaries are useful when you need a data structure to store information that can be referenced
or looked up.

1

https://www.airnow.gov/aqi/aqi-basics/

In this task you’ll begin with three list objects:

• state_list - an ordered list of the state where each data point was recorded
• county_list - an ordered list of the county where each data point was recorded
• aqi_list - an ordered list of AQI records

As a refresher, here is an example table of some of the information contained in these variables:

state_name county_name aqi
Arizona Maricopa 9
California Alameda 11
California Sacramento 35
Kentucky Jefferson 6
Louisiana East Baton Rouge 5

Reminder: This lab uses more data than the last one. This table is just a small sample of the
information contained in the three lists that are provided for this activity.

0.3 1a: Create a list of tuples

Begin with an intermediary step to prepare the information to be put in a dictionary.

• Convert state_list, county_list, and aqi_list to a list of tuples, where each tuple con-
tains information for a single record: (state, county, aqi).

• Assign the result to a variable called epa_tuples.

[1]: # RUN THIS CELL TO IMPORT YOUR DATA
import ada_c2_labs as lab
state_list = lab.fetch_epa('state')
county_list = lab.fetch_epa('county')
aqi_list = lab.fetch_epa('aqi')

[2]: ### YOUR CODE HERE ###
epa_tuples = list(zip(state_list, county_list, aqi_list))

Hint 1

Refer to what you learned about element-wise combination of iterable objects.

Hint 2

It’s possible to create a list of tuples using a loop, but there’s a much simpler way of accomplishing
the task using a built-in Python function.

Hint 3

The zip() function accepts any number of iterable objects as arguments. If the arguments are
all of equal length, the function returns an iterator object of tuples, where each tuple contains
element[i] of each argument.

2

You can then either loop over the iterator object or pass it to the list() function to unpack its
values.

Refer to the zip() Python documentation for more information.

0.4 1b: Create a dictionary

Now that you have a list of tuples containing AQI records, use it to create a dictionary that allows
you to look up a state and get all the county-AQI pairs associated with that state.

• Create a dictionary called aqi_dict:
– Use a loop to unpack information from each tuple in epa_tuples.
– Your dictionary’s keys should be states.
– The value at each key should be a list of tuples, where each tuple is a county-AQI pair

of a record from a given state.

Example:

[IN] aqi_dict['Vermont']
[OUT] [('Chittenden', 18.0),

('Chittenden', 20.0),
('Chittenden', 3.0),
('Chittenden', 49.0),
('Rutland', 15.0),
('Chittenden', 3.0),
('Chittenden', 6.0),
('Rutland', 3.0),
('Rutland', 6.0),
('Chittenden', 5.0),
('Chittenden', 2.0)]

[3]: ### YOUR CODE HERE ###
aqi_dict = {}
for state, county, aqi in epa_tuples:

if state in aqi_dict:
aqi_dict[state].append((county, aqi))

else:
aqi_dict[state] = [(county, aqi)]

[4]: aqi_dict['Vermont']

[4]: [('Chittenden', 18.0),
('Chittenden', 20.0),
('Chittenden', 3.0),
('Chittenden', 49.0),
('Rutland', 15.0),
('Chittenden', 3.0),
('Chittenden', 6.0),
('Rutland', 3.0),

3

https://docs.python.org/3/library/functions.html#zip

('Rutland', 6.0),
('Chittenden', 5.0),
('Chittenden', 2.0)]

Hint 1

Refer to what you learned about unpacking tuples in loops and creating dictionaries.

Hint 2

There are 3 elements in each tuple in epa_tuples. Therefore, for each iteration of your loop, you’ll
need to unpack these 3 elements into their own variables.

Hint 3

With each loop iteration, check whether the state is already a key in aqi_dict. Then, use condi-
tional logic: * If it is, append the county and AQI as a tuple to the list at that state’s value. *
If it’s not, assign the state as a new key in aqi_dict, with a value that is a list containing the
county-AQI tuple.

1 Task 2: Use the dictionary to retrieve information

Now that you have a dictionary of county-AQI readings by state, you can use it to retrieve infor-
mation and draw further insight from your data.

1.1 2a: Calculate how many readings were recorded in the state of Arizona

Use your Python skills to calculate the number of readings that were recorded in the state of
Arizona.

Expected output:

[OUT] 72

[5]: ### YOUR CODE HERE ###
len(aqi_dict['Arizona'])

[5]: 72

Hint

Because you only need a count of records, try using the len() function to check how many records
are in the list that represents the value associated with the 'Arizona' key.

1.2 2b: Calculate the mean AQI from the state of California

Use your Python skills to calculate the mean of the AQI readings that were recorded in the state
of California. Note that there are many different approaches you can take. Be creative!

Expected output:

4

[OUT] 9.412280701754385

[6]: ### YOUR CODE HERE ###
ca_aqi_list = [aqi for county, aqi in aqi_dict['California']]
ca_aqi_mean = sum(ca_aqi_list) / len(ca_aqi_list)
ca_aqi_mean

[6]: 9.412280701754385

Hint 1

When you look up a state as a key in aqi_dict, its corresponding value is a list of tuples. Consider
using a list comprehension to unpack the data contained in each tuple so you can perform operations
on it.

Hint2

If you can create a list of just the AQI values from each tuple in the values of the ‘California’ key,
then you can calculate the mean of the list in the next step.

Hint 3

One way to construct your list is:

[aqi for county, aqi in aqi_dict['California']]

Then, you can sum all the elements in the list and divide by the length of the list to calculate the
mean.

2 Task 3: Define a county_counter() function

You want to be able to quickly look up how many times a county is represented in a given state’s
readings. Even though you already have a list containing just county names, it’s not safe to
rely on the counts from that list alone because some states might have counties with the same
name. Therefore, you’ll need to use the state-specific information in aqi_dict to calculate this
information.

2.1 3a: Write the function

• Define a function called county_counter that takes one argument:
– state - a string of the name of a U.S. state

• Return county_dict - a dictionary object whose keys are counties of the state given in
the function’s argument. For each county key, the corresponding value should be the count
of the number of times that county is represented in the AQI data for that state.

Example:

[IN] county_counter('Florida')
[OUT] {'Duval': 13,

'Hillsborough': 9,
'Broward': 18,

5

'Miami-Dade': 15,
'Orange': 6,
'Palm Beach': 5,
'Pinellas': 6,
'Sarasota': 9}

NOTE: Depending on the version of Python you’re using, the order of the items returned by a
dictionary can vary, so it’s possible that your keys might not print in the same order as listed above.
However, the key-value pairs themselves will be the same if you do the exercise successfully.

[7]: ### YOUR CODE HERE ###
def county_counter(state):

county_dict = {}
for county, aqi in aqi_dict[state]:

if county in county_dict:
county_dict[county] +=1

else:
county_dict[county] = 1

return county_dict

Hint 1

Refer to what you learned about function syntax, how dictionaries behave with iteration techniques,
and how to unpack tuples.

Hint 2

• Use aqi_dict in the body of the function.

• When you look up a state as a key in aqi_dict, its corresponding value is a list of tuples.
Unpack the tuples to extract the county, which you can then use to build county_dict.

Hint 3

• Begin by instantiating county_dict as an empty dictionary.
• Then, in a for loop, unpack county, aqi from each tuple in aqi_dict[state].
• Next, use conditional logic to assemble county_dict:

– If county is already a key in county_dict, increment the value at that key by 1.
– If county is not a key in county_dict, then assign it as a new key whose value is 1.

• Return county_dict.

2.2 3b: Use the function to check Washington County, PA.

Use the county_counter() function to calculate how many AQI readings were from Washington
County, Pennsylvania.

Expected result:

[OUT] 7

6

[8]: ### YOUR CODE HERE ###
pa_dict = county_counter('Pennsylvania')
pa_dict['Washington']

[8]: 7

Hint

Use the county_counter() function to generate a dictionary of county counts for the state of
Pennsylvania. Then, use the resulting dictionary to look up the count for Washington county.

2.3 3c: Use the function to check the different counties in Indiana

Use the county_counter function to obtain a list of all the different counties in the state of Indiana.

Expected result:

[OUT] dict_keys(['Marion', 'St. Joseph', 'Vanderburgh', 'Allen', 'Vigo'
'Hendricks', 'Lake'])

NOTE: Depending on the version of Python you’re using, the order of the items returned by a
dictionary can vary, so it’s possible that your keys might not print in this same order as listed
above. However, the key-value pairs themselves will be the same if you do the exercise successfully.

[9]: ### YOUR CODE HERE ###
county_counter('Indiana').keys()

[9]: dict_keys(['Marion', 'St. Joseph', 'Vanderburgh', 'Allen', 'Vigo', 'Hendricks',
'Lake'])

Hint 1

Refer to what you learned about dictionary methods.

Hint 2

Enter 'Indiana' as an argument to your county_counter() function to get a dictionary of county
counts in the state of Indiana. Then, use a dictionary method on the resulting dictionary.

Hint 3

Use the keys() dictionary method to return a list of the dictionary’s keys, which represents the
different counties in the state of Indiana.

3 Task 4: Use sets to determine how many counties share names

In this task, you’ll create a list of every county from every state, then use it to determine how many
counties have the same name.

7

3.1 4a: Construct a list of every county from every state

1. • Use aqi_dict and county_counter() to construct a list of every county from every
state.

• Assign the result to a variable called all_counties.

2. Find the length of all_counties.

Expected result:

[OUT] 277

Hint 1

Refer to what you learned about looping over dictionaries. Also, review previous tasks you com-
pleted in this notebook.

Hint 2

• Note that when you call the keys() method on a dictionary, the returned object is similar to
a list, but it’s not of type list. It’s a dictionary view object, but you can convert it to a list
using the list() function.

• Be mindful of the following:

– list_a.append(list_b) increases the length of list_a by 1 no matter how long list_b
is, because append() creates a list of lists.

– list_a + list_b increases the length of list_a by len(list_b), because adding (+)
lists combines them.

Hint 3

1. Instantiate an empty list called all_counties.
2. Loop over each state in aqi_dict.keys(). For each iteration:

• Extract a list of that state’s counties using list(county_counter(state).keys()).
• Add the list of counties to all_counties.

3. Print len(all_counties)

[10]: # 1. ### YOUR CODE HERE ###
all_counties = []
for state in aqi_dict.keys():

counties = list(county_counter(state).keys())
all_counties += counties

2. ### YOUR CODE HERE
len(all_counties)

[10]: 277

8

3.2 4b: Calculate how many counties share names

Use all_counties and your knowledge of sets and list methods to determine how many counties
share names.

Expected result:

[OUT] 41

[11]: shared_count = 0

for county in set(all_counties):
count = all_counties.count(county)
if count > 1:

shared_count += count

shared_count

[11]: 41

Hint 1

Refer to what you’ve learned about sets and review the list methods provided in Reference guide:
Lists.

Hint 2

• A set cannot contain any duplicate elements. Each value is unique.
• Which list method returns the number of times an element occurs in a list?

Hint 3

1. Instantiate a counter with an initial value of 0 to record the number of counties with shared
names.

2. Loop over each unique county name in all_counties. (Use the set() function to get unique
names.)

3. For each iteration of the loop, use the count() list method to determine how many counties
in all_counties have that county name.

4. If the number of counties with that name is more than one, add that number to the counter
(from step 1).

Note that this doesn’t tell you how many different county names were duplicated. Further analysis
could uncover more details about this. Perhaps you can figure it out!

4 Conclusion

What are your key takeaways from this lab?

• Python has many built-in functions that are useful for building dictionaries and sets.
• Dictionaries in Python are useful for representing data in terms of keys mapped to values.

9

https://www.coursera.org/learn/get-started-with-python/supplement/5lejs/reference-guide-lists
https://www.coursera.org/learn/get-started-with-python/supplement/5lejs/reference-guide-lists

• A set will not allow duplicate values.
– The values a set contains are unchangable and unordered.

• Functions and loop iteration can be used to perform calculations on dictionary values.
– Once the values have been calculated, they can be saved to other data types, such as

tuples, lists, and sets.
• There are many ways to access data stored inside a dictionary.

Congratulations! You’ve completed this lab. However, you may not notice a green check mark
next to this item on Coursera’s platform. Please continue your progress regardless of the check
mark. Just click on the “save” icon at the top of this notebook to ensure your work has been logged.

10

	Introduction
	Tips for completing this lab
	1a: Create a list of tuples
	1b: Create a dictionary
	Task 2: Use the dictionary to retrieve information
	2a: Calculate how many readings were recorded in the state of Arizona
	2b: Calculate the mean AQI from the state of California

	Task 3: Define a county_counter() function
	3a: Write the function
	3b: Use the function to check Washington County, PA.
	3c: Use the function to check the different counties in Indiana

	Task 4: Use sets to determine how many counties share names
	4a: Construct a list of every county from every state
	4b: Calculate how many counties share names

	Conclusion

