Endless SQL possibilities

You have learned that a SQL query uses SELECT, FROM, and WHERE to specify the data to be returned from the query.
This reading provides more detailed information about formatting queries, using WHERE conditions, selecting all
columns in a table, adding comments, and using aliases. All of these make it easier for you to understand (and write)
queries to put SQL in action. The last section of this reading provides an example of what a data analyst would do to
pull employee data for a project.

Capitalization, indentation, and semicolons

You can write your SQL queries in all lowercase and don’t have to worry about extra spaces between words. However,
using capitalization and indentation can help you read the information more easily. Keep your queries neat, and they
will be easier to review or troubleshoot if you need to check them later on.

fieldl

table

fieldl = condition;

Motice that the SQL statement shown above has a semicolon at the end. The semicolon is a statement terminator and
is part of the American National Standards Institute (ANSI) SQL-92 standard, which is a recommended common syntax
for adoption by all SQL databases. However, not all SQL databases have adopted or enforce the semicolon, so it's
possible you may come across some 5QL statements that aren’t terminated with a semicolon. If a statement works
without a semicolon, it's fine.

WHERE conditions

In the query shown above, the SELECT clause identifies the column you want to pull data from by name, field1, and
the FROM clause identifies the table where the column is located by name, table. Finally, the WHERE clause narrows
your query so that the database returns only the data with an exact value match or the data that matches a certain
condition that you want to satisfy.

For example, if you are looking for a specific customer with the last name Chavez, the WHERE clause would be:
WHERE fieldl = 'Chavez'

However, if you are looking for all customers with a last name that begins with the letters “Ch," the WHERE clause
would be:

WHERE fieldl LIKE "Ch%'

You can conclude that the LIKE clause is very powerful because it allows you to tell the database to look for a certain
pattern! The percent sign (%) is used as a wildcard to match one or more characters. In the example above, both
Chavez and Chen would be returned. Note that in some databases an asterisk (*) is used as the wildcard instead of a
percent sign (%).

SELECT all columns
Can you use SELECT*?

In the example, if you replace SELECT fieldl with SELECT * , you would be selecting all of the columns in the table
instead of the field1 column only. From a syntax point of view, it is a correct SQL statement, but you should use the
asterisk (*) sparingly and with caution. Depending on how many columns a table has, you could be selecting a
tremendous amount of data. Selecting too much data can cause a query to run slowly.

Comments

Some tables aren’t designed with descriptive enough naming conventions. In the example, field1 was the column for a
customer’s last name, but you wouldn’t know it by the name. A better name would have been something such as
last_name. In these cases, you can place comments alongside your SQL to help you remember what the name
represents. Comments are text placed between certain characters, [* and */, or after two dashes (--) as shown below.

*

Comments can also be added outside of a statement as well as within a statement. You can use this flexibility to
provide an overall description of what you are going to do, step-by-step notes about how you achieve it, and why you
set different parameters/conditions.

-- This is an important query used later to join with the accounts table

SELECT
rowkey, -- key used to join with account_id
Info.date, -- date is in string format YYYY-MM-DD HH:MM:SS
Info.code -- e.g., 'pub-#it#'

FROM Publishers

The more comfortable you get with SQL, the easier it will be to read and understand queries at a glance. Still, it never
hurts to have comments in a query to remind yourself of what you're trying to do. This also makes it easier for others to
understand your query if your query is shared. As your queries become more and more complex, this practice will save
you a lot of time and energy to understand complex queries you wrote months or years ago.

Example of a query with comments

Here is an example of how comments could be written in BigQuery:

customer id,
first_name,

last_name

customer_data.customer_name

In the above example, a comment has been added before the SQL statement to explain what the query does.
Additionally, a comment has been added next to each of the column names to describe the column and its use. Two
dashes (--) are generally supported. So it is best to use -- and be consistent with it. You can use # in place of -- in the
above guery, but # is not recognized in all SQL versions; for example, MySQL doesn't recognize #. You can also place
comments between /* and */ if the database you are using supports it.

As you develop your skills professionally, depending on the SQL database you use, you can pick the appropriate
comment delimiting symbols you prefer and stick with those as a consistent style. As your queries become more and
more complex, the practice of adding helpful comments will save you a lot of time and energy to understand queries
that you may have written months or years prior.

Aliases

You can also make it easier on yourself by assigning a new name or alias to the column or table names to make them
easier to work with (and avoid the need for comments). This is done with a SQL AS clause. In the example below, the
alias last_name has been assigned to field1 and the alias customers assigned to table. These aliases are good for the
duration of the query only. An alias doesn’t change the actual name of a column or table in the database.

Example of a query with aliases

fieldl last name -- Alias to make my work easier
table AS customers -- Alias to make my work easier

last_name

Putting SQL to work as a data analyst

Imagine you are a data analyst for a small business and your manager asks you for some employee data. You decide to
write a query with SQL to get what you need from the database.

You want to pull all the columns: emplD, firstName, lastName, jobCode, and salary. Because you know the database
isn’t that big, instead of entering each column name in the SELECT clause, you use SELECT *. This will select all the
columns from the Employee table in the FROM clause.

Employee

Now, you can get more specific about the data you want from the Employee table. If you want all the data about
employees working in the SFI job code, you can use a WHERE clause to filter out the data based on this additional
requirement.

Here, you use:

Employee

jobCode

A portion of the resulting data returned from the SQL query might look like this:

emplD firstName lastName jobCode salary
0002 Homer Simpson SFI 15000
0003 Marge Simpson SFI 30000
0034 Bart Simpson 5FI 25000
0067 Lisa Simpson 5FI 38000
0088 Ned Flanders SFI 42000
0076 Barney Gumble 5FI 32000

Suppose you notice a large salary range for the SFI job code. You might like to flag all employees in all departments
with lower salaries for your manager. Because interns are also included in the table and they have salaries less than
$30,000, you want to make sure your results give you only the full time employees with salaries that are $30,000 or less.
In other words, you want to exclude interns with the INT job code who also earn less than 530,000. The AND clause
enables you to test for both conditions.

You create a SQL query similar to below, where <= means "does not equal":

Employee

jobCode <> "INT'
salary <= 38000;

The resulting data from the SQL query might look like the following (interns with the job code INT aren't returned):

emplD firstName lastName jobCode salary
0002 Homer Simpson SFI 15000
0003 Marge Simpson SFI 30000
0034 Bart Simpson 5FI 25000
0108 Edna Krabappel TUL 13000
0099 Moe Szyslak ANA 28000

With quick access to this kind of data using SQL, you can provide your manager with tons of different insights about
employee data, including whether employee salaries across the business are equitable. Fortunately, the query shows
only an additional two employees might need a salary adjustment and you share the results with your manager.

Pulling the data, analyzing it, and implementing a solution might ultimately help improve employee satisfaction and
loyalty. That makes SQL a pretty powerful tool.
Resources to learn more

Nonsubscribers may access these resources for free, but if a site limits the number of free articles per month and you
already reached your limit, bookmark the resource and come back to it later.

» W3Schools SQL Tutorial [4: If you would like to explore a detailed tutorial of SQL, this is the perfect place to

start. This tutorial includes interactive examples you can edit, test, and recreate. Use it as a reference or complete
the whole tutorial to practice using SQL. Click the green Start learning SQL now button or the Next button to
begin the tutorial.

» SQL Cheat Sheet [4:For more advanced learners, go through this handy 3-page resource to gain an overview of
additional SQL functions and formulas. By the time you are finished looking through the cheat sheet, you will
know a lot more about the various SQL techniques and will be prepared to use it for business analysis and other
tasks.

\/ Completed Go to next item

‘5 Like '_L: Dislike ' Report an issue

https://getfireshot.com/pdf_aHR0cHM6Ly93d3cudzNzY2hvb2xzLmNvbS9zcWwvZGVmYXVsdC5hc3A=
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuc3FsdHV0b3JpYWwub3JnL3NxbC1jaGVhdC1zaGVldC8=

